セクションの複数ページをまとめています。 印刷またはPDF形式で保存...

もとのページに戻る

2024-10-02 現在

マニュアル

ここでは、製品使用における詳細情報を掲載しています。

1 - TWELITE STAGE SDK

TWELITE の設定やデータ表示、ファームウェア開発を行うためのパッケージ

1.1 - 導入方法

TWELITE STAGE SDK のインストール方法

動作環境によっては、本アプリケーションの動作に各種設定が必要です。問題が生じた場合には、本資料の記述を参考にして環境を整備してください。

TWELITE STAGE SDK のインストール手順

① アーカイブを取得

各プラットフォーム (Windows / macOS / Linux) 用の TWELITE STAGE SDK を ダウンロード します。

② アーカイブを展開

ダウンロードしたZipアーカイブを展開します。

③ ファイルを確認

展開先のフォルダを確認します。

展開先のフォルダ {MWSTAGE インストール} には、以下が含まれます。

  • TWELITE STAGE APP
    • Windows の場合:TWELITE_Stage.exe(通常版)、TWELITE_Stage_VSCode.exe(VSCode対応版)
    • macOS の場合:TWELITE_Stage.command(通常版)、TWELITE_Stage_VSCode.command(VSCode対応版)
    • Linux の場合:TWELITE_Stage.run(通常版)、TWELITE_Stage_VSCode.run(VSCode対応版)
  • TWELITE_STAGE - TWELITE STAGE APP の関連ファイル
  • MWSDK - ライブラリ、ソースコードなど
  • Tools - ビルドするためのツールチェインなど
  • BIN - TWELITE STAGE APP の [BINから選択]メニューで参照されるTWELITE 向け.BINファイル
  • log - TWELITE STAGE APP のログ機能やデータベースファイルの保存先
  • flask_wsns_db - Python, Flask, sqlite3 による簡易的なサーバ

詳細は「フォルダ構成」をご覧ください。

1.1.1 - フォルダ構成

TWELITE STAGE APP のフォルダ構成について

TWELITE STAGE APP は、TWELITE STAGE SDK のフロントエンドアプリケーションとして動作します。

ここでは、そのフォルダ構成について解説します。

MWSTAGE/            : TWELITE STAGE SDK インストール
  TWELITE_Stage.??? : 実行形式 (Windwows .exe, macOS .command, Linux .run)
  TWELITE_Stage.sav : 設定ファイル
  TWELITE_Stage.ini : その他設定
  TWELITE_Stage/    : TWELITE STAGE APP の関連ファイル

  MWSDK/            : MWSDKのライブラリなど
  BIN/              : [BINファイル選択]時の格納先
  log/              : ログ・データベース格納先

  Tools/            : gcc コンパイラなどのツール一式

  flask_wsns_db/    : Python, Flask, sqlite3 による簡易的なサーバ

MWSDK フォルダ

MWSDK/
  Act_samples/        : mwx ライブラリによるサンプルコード
  Wks_TweApps/        : TWELITE APPS のソースコード
  Act_extras/         : mwx ライブラリによるより専門的なサンプル、他のライブラリを引用したもの
  TWENET/             : TWENET ライブラリ (mwx ライブラリなど)
  ChipLib/            : 半導体ライブラリ
  MkFiles/            : Makefile の本体処理部分
  docs/               : ライブラリマニュアルなど
  LICENSE             : MWSDKのライセンス記述
  000manifest         : MWSDKのバージョン情報
  ReleaseNotes.md     : 更新履歴(トップページ)
  ReleaseNotes_en.md  : 更新履歴(英語)
  ReleaseNotes_jp.md  : 更新履歴(日本語)

MWSDK フォルダには、TWELITE のソフトウェアを構築するためのライブラリや、サンプル、TWELITE APPS のソースコードが含まれます。

TWELITE_Stage.sav

TWELITE STAGE APPの設定情報を記録します。

ファイル名は TWELITE STAGE APP 実行形式名 + .sav です。

TWELITE_Stage.ini

.iniファイルの詳細はこちら

  • MWSDK= MWSDK/ フォルダの替わりに別のフォルダを指定したいときに編集します。複数のライブラリバージョンを混在させる場合に便利です。上記の例では MWSDK2020_10 フォルダを利用します。
  • LANG= TWELITE STAGE APP の表示言語を英語にする場合は LANG=en を指定します。

設定の異なる TWELITE STAGE APP を実行する

TWELITE_Stage.exe (Windows の場合) を別のファイル名でコピーします。 例えば TWS1.exe と変更した場合は、TRS1.sav, TRS1.ini という設定ファイルを参照します。

BIN フォルダ

TWELITE STAGE APP の [BINから選択] メニューを選択したときには、このフォルダにある ファームウェアファイル (.BIN) を利用します。

log フォルダ

TWELITE STAGE APP でシリアルポートのログ機能を実行したときには、このフォルダにログファイルを格納します。

グラフ機能を用いた場合のデータベースファイルの格納先や、csvファイルの出力先もこのフォルダです。

Tools フォルダ

gcc, g++ など、クロスコンパイラの toolchain 等が含まれます。

プラットフォームに固有のユーティリティもこのフォルダに格納されます。詳しくは Tools/readme.txt を参照してください。

flask_wsns_db フォルダ

TWELITE STAGE APP のセンサーグラフビューアで作成したデータベースにアクセスするためのPythonのサンプルスクリプトです。 本サンプルでは表やグラフでデータをWebブラウザで閲覧することができます。

詳しくは flask_wsns_db/README.html を参照してください。

ビルドプロジェクトフォルダ

フォルダの検索順

TWELITE STAGE APP は、以下の順でビルドプロジェクトフォルダ (Act_samples など) を検索します。

  1. TWELITE STAGE APP が起動したときのフォルダ
  2. TWELITE STAGE APP の実行形式があるフォルダ
  3. {MWSDKフォルダ}/..
  4. {MWSDKフォルダ}

Wks_Acts

Wks_Acts フォルダを作成した場合には、Act_samples フォルダの替わりに、このフォルダをメニューの[actビルド&書換]メニューから参照します。

1.1.2 - プラットフォーム別の注意事項

インストールにおけるプラットフォーム別の注意事項

TWELITE STAGE APP を各プラットフォームにインストールする際の注意事項を記載しています。

1.1.2.1 - Windowsへインストールする際の注意事項

TWELITE STAGE APP を Windows へインストールする際の注意事項
Windows

環境

以下の環境で開発・動作確認しています。

  • Windows10 バージョン 1903
  • VisualStudio 2019 (32bit ビルド)

シリアルポートの取り扱い

MONOSTICK や TWELITE R シリーズには、 FTDI社の USBシリアル変換IC(FT230/FT232 シリーズ)を搭載しています。これらを利用するために、デバイスドライバのインストールが必要となる場合があります。

PC がMONOSTICK や TWELITE R を認識しない場合には、 https://www.ftdichip.com より D2XX ドライバをインストールしてください。

Visual C++ ランタイムライブラリの追加インストール

場合によっては、Visual Studio 2019 の Visual C++ 頒布可能コード(ランタイムライブラリ)が必要です。

アプリケーションの起動時にエラーが出て起動しない場合は、本パッケージで再配布している TWELITE_Stage¥INSTALL¥VC_redist.x86.exe を実行するか、マイクロソフト社のウェブサイトから入手してください。なお、再配布バイナリは 32bit です。

1.1.2.2 - macOSインストールする際の注意事項

TWELITE STAGE APP を macOS へインストールする際の注意事項
macOS

環境

以下の環境で開発・動作確認しています。

  • macOS 10.14 (Mojave, Intel)
  • macOS 12 (Monterey, Apple Silicon)

依存するソフトウェアや警告ダイアログについて

下記の事象が発生した場合には、 TWELITE_Stage.command の動作のために、実行の許可やインストールが必要です。

  • ツールチェインにはコード署名がなされていますが、コード署名が正しく認証されない場合は、ビルドツールチェイン (ba-elf-gcc など) の実行形式一つずつについて、動作許可を求められる場合があります。
  • ダウンロードアーカイブには署名しておりません。実行時には、インターネットからダウンロードされたアプリケーションとしてセキュリティ警告が出る場合があります。
  • TWELITE_Stage.command をインストールしたパスからの実行許可を要求される場合があります。
  • ビルド実行時に make ユーティリティのインストールダイアログが出る場合があります。

make ユーティリティの追加インストール

場合によっては、make ユーティリティをインストールしなくてはなりません。

コマンドライン (zsh) から make を実行したときに、エラーが出る場合には Command Line Tools をインストールします。


xcode-select --install

インストールが完了したら、make を入力して以下のメッセージの出力を確認します。


make
make: *** No targets specified and no makefile found.  Stop.

シリアルポートの取り扱い

MONOSTICK や TWELITE R シリーズには、 FTDI社 (https://www.ftdichip.com) の USBシリアル変換IC(FT230/FT232 シリーズ)を搭載しています。これらを利用するために、デバイスドライバのインストールが必要となる場合があります。

TWELITE_Stage.command を起動してもシリアルポートが表示されない場合は、FTDI社のドライバをアンロード(無効化)してください。

https://www.ftdichip.com/Drivers/D2XX.htm より D2xxHelper をダウンロードできます。 なお、TWELITE STAGE SDKの TWELITE_Stage/INSTALL フォルダにも同じものを収録しています。

参考:FTDI社デバイスドライバの手動アンロード

FTDI 関連のドライバをアンロードするには、以下のコマンドを実行します。


sudo kextunload -b com.apple.driver.AppleUSBFTDI

1.1.2.3 - Linuxへインストールする際の注意事項

TWELITE STAGE APP を Linux へインストールする際の注意事項
Linux

環境

以下の環境で開発・動作確認しています。

  • Ubuntu 16.04, 18.04, 20.04
  • NNLinux Beta8 64bit
  • CentOS 7

シリアルポートの取り扱い

TWELITE STAGE から MONOSTICK や TWELITE-R を認識するには、ftdi_sioモジュールをアンロードし、USBデバイスに対して読み書き権限を与える必要があります。

なお、この設定を自動化するための udev の設定スクリプト(Ubuntu, CentOS) を用意しています。

/etc/udev/rules.d に定義をコピーして、設定をリロードします。 設定後は USB デバイスを抜き差ししてから TWELITE_Stage.run を実行してください。起動直後の画面で USB デバイスが表示されたなら、設定が反映されています。

Ubuntu 16.04, 18.04, 20.04


cd ./MWSTAGE/TWELITE_Stage/INSTALL/ubuntu/
sudo ./set_udev_sudo.sh

定義ファイル(読みやすいように改行しています)

ACTION=="add",
   ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001",
   MODE="0666",
   RUN+="/bin/sh -c 'rmmod ftdi_sio && rmmod usbserial'"
ACTION=="add",
   ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6015",
   MODE="0666",
   RUN+="/bin/sh -c 'rmmod ftdi_sio && rmmod usbserial'"

Centos 7


cd ./MWSTAGE/TWELITE_Stage/INSTALL/centos/
sudo ./set_udev_sudo.sh

定義ファイル(読みやすいように改行しています)

ACTION=="add",
   ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001",
   MODE="0666",
   RUN+="/bin/sh -c '/usr/sbin/rmmod ftdi_sio'"
ACTION=="add",
   ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6015",
   MODE="0666",
   RUN+="/bin/sh -c '/usr/sbin/rmmod ftdi_sio'"

アプリケーションの登録

必要に応じて、お使いのデスクトップ環境に合った方法でアプリケーションを登録してください。

Ubuntu 16.04, 18.04, 20.04

Ubuntu用の定義ファイル生成スクリプトを用意しています。


cd ./MWSTAGE/TWELITE_Stage/INSTALL/ubuntu/
./make_launch_icon.sh

このスクリプトは .desktop ファイル(アプリ定義)を $HOME/.local/share/applications に作成します。

スクリプト実行後に、アプリケーション一覧に TWELITE STAGE のアイコンが追加されます。

1.1.2.4 - Raspberry Piへインストールする際の注意事項

TWELITE STAGE APP を Raspberry Pi へインストールする際の注意事項
RasPi

TWELITE STAGE APPは、一部を除く Raspberry Pi で動作します。

  • マウスとタッチスクリーンに対応します。
  • ビルドツールチェインが付属しており、コンパイルもできます。
  • 実行形式には、X11版のほかにフレームバッファ版(nox)があるほか、半透明エフェクトなどを省略した軽量版があります。

環境

以下の環境で開発・動作確認しています。

ハードウェア

  • Raspberry Pi 3 Model B
  • LCD Screen: Raspberry Pi Touch Display (7")

ソフトウェア

  • Raspberry PI OS (32bit) Lite (Version:August 2020)

既知の問題・制限事項

  • 1回目の起動で /dev/serial0 の動作に失敗することがあります。
  • Raspberry Pi 4B では /dev/serial0 の動作は未検証です。
  • Raspberry Pi 4B ではタッチスクリーンの動作は未検証です。
  • TWELITE STAGE への入力文字列が/dev/tty1上で動作してるシェルやgettyへ入力文字列がそのまま渡されます。/dev/tty1から起動することを推奨します。
  • 他のインストールや動作のプログラム(X11など)に影響を受けることがあります。

アーカイブの展開

ダウンロードしたアーカイブファイルは、パス名に空白や日本語などが含まれないフォルダに展開します。

以下ではRaspberry Piのホームフォルダに展開しています。


cd /home/pi
unzip MWSTAGE2020_XX_YYYY.zip

フォルダ構成

../MWSTAGE
     TWELITE_Stage.run    TWELITE_Stage アプリ
     BIN/                 ファームウェアBINファイル
     MWSDK/               MWSDK ライブラリなど
     TWELITE_Stage/       TWELITE_Stage アプリ関連ファイル

デバイスドライバ

TWELITE STAGE から MONOSTICK や TWELITE R を認識するためには、ftdi_sioモジュールのアンロードや、USBデバイスに対する読み書き権限の付与が必要です。

この設定を自動化するための udev の設定スクリプトを用意しています。/etc/udev/rules.d に定義をコピーして、設定をリロードしています。設定後は USB デバイスを抜き差ししてから TWELITE_Stage.run を実行してください。起動直後の画面で USB デバイスが表示されたなら、設定が反映されています。


cd ./MWSTAGE/TWELITE_Stage/INSTALL/ubuntu/
sudo ./set_udev_sudo.sh

定義ファイル(読みやすいように改行しています)

ACTION=="add",
   ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001",
   MODE="0666",
   RUN+="/bin/sh -c 'rmmod ftdi_sio && rmmod usbserial'"
ACTION=="add",
   ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6015",
   MODE="0666",
   RUN+="/bin/sh -c 'rmmod ftdi_sio && rmmod usbserial'"

シリアルポートの取り扱い

上述の環境では、raspi-config よりシリアルポートの設定をすることで /dev/serial0 が利用できます。


sudo raspi-config

メニューより

  "3 Interface Options    Configure connections to peripherals"
  →"P6 Serial Port Enable/disable shell messages on the serial connection"

以下のようにログインシェルとしては利用しない、ハードウェアを有効化するを選択します。

  "Would you like a login shell to be accessible over serial?" -> 
  "Would you like the serial port hardware to be enabled?" → 

配線例

 [TWELITE]               [Raspberry Pi]
  GND  ------------------ Gound (#6,#9,#14,#20,#25,#30,#34,#39のいずれか)
  TXD(DIO6,DIP#10) ------ GPIO15/UART0 RXD (#10)
  PRG(SPIMISO,DIP#7) ---- GPIO23 (#16)
  RXD(DIO7,DIP#3) ------- GPIO14/UART0 TXD (#8)
  RST(RESETN,DIP#21) ---- GPIO22 (#15)
  VCC  ------------------ 3V3 (#1,#17のいずれか)
  SET(DIO12,DIP#15) ----- GPIO12 (#32)
  • TWELITE, Raspberry Pi それぞれのマニュアルを参照してください。
  • DIP# は TWELITE DIP のピン番号です。
  • 上記の配線は TWELITEが安定稼働することを保証するものではありません。

TWELITE STAGE APPの起動

  • フレームバッファ版(nox)はX11のデスクトップ上では動作しません。X11を終了しておきます。
  • TWELITE_Stage.runを実行します。スクリーン画面上のTWELITE STAGE APPが表示されます。

留意事項

  • マウスとタッチパネルに対応します。
  • TWELITE STAGE APP中で、入力した文字はコンソール画面にも表示される場合があります。

その他

/dev/dri エラー

TWELITE_Stage.run の起動時に以下のエラーが出る場合がありますが、無視して構いません。

  "The path /dev/dri/ cannot be opened or is not available"

メモリ不足

CPU数が4以上の場合、ビルド時はCPU数を一つ引いた値の並列コンパイルを実行します(4コアなら3並列)。 場合によってはメモリ不足が発生するかもしれません。その場合は並列数を変更してください。

Raspberry Pi 4

1.2 - TWELITE STAGE APP

ビルドや書き換え、設定やデータ表示を行うアプリケーション
TWELITE STAGE APP は、ファームウェアのビルドや書き換え、TWELITE APPSの設定やデータ表示を行うアプリケーションです。評価開発環境 TWELITE STAGE で使用します。

1.2.1 - TWELITE STAGE APP マニュアル

ビルドや書き換え、設定やデータ表示を行うアプリケーション
TWELITE STAGE APP は、ファームウェアのビルドや書き換え、TWELITE APPSの設定やデータ表示を行うアプリケーションです。評価開発環境 TWELITE STAGE で使用します。

様々なプラットフォームで動作します。

  • Windows10
  • macOS (High Sierra 以降、Intel および Apple Silicon Mac に対応)
  • Linux (Ubuntu18.04)
  • Raspberry Pi (Raspberry Pi 3 Model B, Lcd Touch Screen, Raspberry Pi OS August-2020)
  • (M5stack : バージョン1.0 まで対応。v1.3以降はソースレベルで非対応です。)

※ プラットフォームによって、動作条件や配布形式、また機能が異なります。

ルートメニュー

ルートメニュー

加速度リアルタイムグラフ

加速度リアルタイムグラフ

本資料について

  • 対象のプラットフォームを示すため、一部のページでは以下を記載しています。
    • Windows   – Windows 10
    • macOS   – Mac OS X, OS X, macOS
    • Linux   – Ubuntuなど(64bit)
    • RasPi   – Raspberry Pi

1.2.1.1 - パッケージの取得

TWELITE STAGE APP の取得方法

最新版のTWELITE STAGE アプリは、以下のいずれかの方法で取得できます。

TWELITE STAGE SDK 全体(公式サイト)

モノワイヤレス公式サイトでは、TWELITE STAGE アプリを含む開発ツール一式(Windows/macOS/Linux用)を配布しています。

TWELITE STAGE-トワイライトステージ - MONO-WIRELESS.COM

TWELITE STAGE アプリのみ(GitHub)

モノワイヤレス公式リポジトリでは、TWELITE STAGE アプリ単体のバイナリを配布しています。 TWELITE STAGE アプリだけを更新する場合や、M5Stack版を取得する際にはこちらをご利用ください。 各バイナリのバージョンはGitHub上のtagから識別できます。

Windows

monowireless/TWELITE_Stage_BIN_Win: Binary Distribution of TWELITE Stage.

macOS

monowireless/TWELITE_Stage_BIN_macOS: Binary distribution of TWELITE Stage for macOS

Linux

Linux 版のバイナリは個別に配布しておりません。 バイナリは TWELITE STAGE SDK パッケージから取得してください。 もしくは、ソースコードからビルドしてください。

Raspberry Pi

Raspberry Pi 版のバイナリは個別に配布しておりません。 バイナリは TWELITE STAGE SDK パッケージから取得してください。 もしくは、ソースコードからビルドしてください。

M5Stack

バージョン 1.0.3a までを以下のページで配布しております。

monowireless/TWELITE_STAGE_Bin_M5Stack

ソースコード (MWM5ライブラリ)

TWELITE STAGE のソースコードを含む MWM5 ライブラリは以下のページで公開しています。

monowireless/mwm5

TWELITE STAGE アプリのソースコードは、examples/TWELITE_Stageに配置しています。

1.2.1.2 - 使用方法

TWELITE STAGE APP の使用方法
TWELITE STAGE APP の画面・操作方法を解説します。

アプリの起動方法

TWELITE STAGE アプリを起動するには、{MWSTAGE インストール} にある実行形式を実行します。

実行はプラットフォーム(Windows, macOS, Linux)によって方法が異なります。

システム拡張子備考
Windows.exeエクスプローラで実行形式をダブルクリック
macOS.commandFinder で実行形式をダブルクリック
Linux RasPi.runディストリビューションやインストール環境に依存します。
Xウインドウシステム上のターミナル画面(xtermなど)から、コマンドとして実行します

アプリの実行形式

TWELITE STAGE APP には、2種類の実行形式があります。

  • TWELITE_Stage.{拡張子} - 標準設定で起動します。
  • TWELITE_Stage_VSCode.{拡張子} - 「VSCode を使う」設定済みです(設定はTWELITE_Stage_VSCode.iniに保存)。VSCodeを使う設定を有効にすると、VSCodeを用いた開発作業に適した動作を行うようになります。

アプリの実行画面

アプリを起動すると、以下の2種類のウィンドウが表示されます。

  • メイン画面
    • TWELITE STAGE APPのユーザインタフェースを表示します。
    • TWELITE STAGE APPの操作はこの中で行います。
  • コマンド画面
    • 通常は使用しませんが、補助情報を表示します。
      • シリアル通信の内容が表示されるため、ログを確認する用途に最適です。
      • コマンドラインから実行した場合には、実行元のターミナルがコマンド画面となります。
TWELITE STAGE APP 画面例

TWELITE STAGE APP 画面例

アプリの終了

いずれかの方法で終了してください。

  • 実行画面上の右上にマウスポインタを移動し、画面内に表示された終了ボタンを押します。
  • 実行画面のウインドウを閉じます(macOSの場合は⌘Qも使用できます)。

1.2.1.2.1 - キーとマウスの操作

TWELITE STAGE APP に使用するキーとマウスの操作説明

Windows   macOS   Linux   RasPi

TWELITE STAGE APP に使用するキーとマウスの操作を解説します。

キー操作

Windows   macOS   Linux   RasPi

Alt(⌘)を押しながら行うキー入力は、TWELITE STAGE APP の設定を変える操作等に割り当てられています。その他のキー操作は、通常は文字入力として機能します。

共通のキー

Windows   macOS   Linux   RasPi

キー意味
ESC ESC素早く2回ESCを押す。キャンセル、または前画面に戻る。
画面によっては1回の押下で前画面に戻ります。
ENTER入力、選択
BS一文字削除
カーソルキー
項目の選択

ヘルプ画面

Windows   macOS   Linux   RasPi

Alt(⌘)を押し続けることでヘルプ画面を表示します。ヘルプ画面ではAlt(⌘)と一緒に操作できるキーの説明や一部動作状況を表示します。

ヘルプ画面は画面の左上部分にマウスポインタを移動することでも表示できます。

ヘルプ画面

ヘルプ画面

Alt(⌘)+操作

Windows   macOS   Linux   RasPi

Alt(⌘)を押しながら行う操作について解説します。

表中ではAlt(⌘)+の表記は省略しています。上記のヘルプ画面から使用可能なキーを確認できますが、下表に補足説明を示します。

Alt(⌘)+キー意味
I+ + + を入力します。インタラクティブモードに入るキーシーケンスです。
※ スリープによる間欠動作を行うアプリは非対応。
Rモジュールをリセットします。TWELITE R や MONOSTICK の機能を用いてリセットピンの制御を行います。
A, S, DA, B, C ボタンを押します。
Shift+A, S, DA, B, C ボタンを長押しします。
C表示されている画面の文字列をクリップボードにコピーします。(画面によって範囲は異なります)
Vクリップボードからキーボード入力としてペーストします。
Fフルスクリーン表示に遷移します。Shift+Fの場合、可能であればより拡大します。
G画面の描画方法を変更します。640x480の液晶画面をエミュレートしていますが、拡大時の描画方式として(1. 液晶モニタ風の描画 / 2. ブラウン管風の描画 / 3. ドットを目立たせた拡大 / 4. ドットをぼやかせた拡大)の4種類が選択できます。
※ 設定メニューで起動時の設定を変更できます。
J画面サイズを選択します。選択可能な画面サイズは {640,480}, {1280, 720}, {1280,960}, {1920,1440}, {2560,1440}, {320,240} です。
※ 設定メニューで起動時設定にできます。
QTWELITE STAGE APPを終了します。
0シリアルポートを切断し、再度シリアルポートの一覧を表示します。
1, 2, …シリアルポートを選択します。
L, Shift+Lシリアルポートの入出力のログを開始します。終了時にはログファイルが Windows であればメモ帳、macOS であれば ログビューア で開かれます。Shift+L でログ格納フォルダを開きます。

その他の操作

キー意味
Alt(⌘)+Shift+Ctrl+mMWX ライブラリコードのフォルダを開きます。
Alt(⌘)+Shift+llog フォルダを開きます。

マウス操作

Windows   macOS   Linux   RasPi

マウス操作は左クリックが中心ですが、右クリック、右ダブルクリック、ホイールを使う場合があります。

マウス操作意味
左クリック選択
左クリックしながらドラッグ画面によっては利用(グラフ画面でのドラッグ)
左ダブルクリック使用しない
右クリック画面によっては使用する
右ダブルクリック画面から脱出する(ESC ESCと同様)
ホイール画面によって利用する(グラフ画面で拡大縮小)

マウスによるA,B,Cボタン

Windows   macOS   Linux   RasPi

画面下部のメニュー表示にマウスポインタを移動すると、[ A ], [ B ], [ C ] という表記のボタンが表示されます。 TWELITE STAGE APPは、この3つ並びのハードウェアボタンを模したメニューに画面ごとの機能を割り当てています。 このボタンを左クリックまたは左長押しクリックすることで、機能を呼び出しできます。(Alt(⌘)+a,s,d`` または Alt(⌘)+Shift+a,s,d`でも選択可能)

画面下部の仮想[ B ]ボタンの表示例

画面下部の仮想[ B ]ボタンの表示例

マウスによる画面操作

Windows   macOS   Linux   RasPi

Windows/macOS/Linuxでは、TWELITE STAGE APP の画面を原則文字列のみで構成しますが、メニューやボタン、タブについてはマウスによる操作が可能です。

コマンダー画面例

コマンダー画面例

画面はテキストのみの構成ですが、画面上部のタブや、反転表示の文字はマウスの左クリックで選択可能です。

1.2.1.2.2 - 画面の操作

TWELITE STAGE APP の各画面における操作説明

Windows   macOS   Linux   RasPi

メニュー画面の例

メニュー画面の例

Windows / macOS / Linux / Raspberry Pi

TWELITE STAGE APPはコンソール画面(コマンドライン)から起動するアプリケーションです。コンソール画面とウインドウ画面の両方に情報を出力します。

コンソール画面には、ターミナルと同様にUART出力を表示します。

Raspberry Pi (nox)

X11 を使わず、フレームバッファに表示します。

通常(フレームバッファ上のシェル画面から起動した場合)はコンソール画面を表示しません。

1.2.1.2.2.1 - シリアルポート選択

シリアルポート選択画面の操作説明

Windows   macOS   Linux   RasPi

概要

Windows / macOS / Linux では、始動時にTWELITEが接続されたシリアルポートを選択する画面を表示します。 ただし、シリアルポートは、あとから接続することもできます。

シリアルポート選択画面の例

シリアルポート選択画面の例

Windows

cキーを押すと、リストで反転中のシリアルポートのCOMポート名が表示されます。

Raspberry Pi

Raspberry Pi ではUSBデバイスに加えて/dev/serial0 /dev/serial1があれば serial0, serial1 を表示します。なお、通常はserial0を使用します。

1.2.1.2.2.2 - メインメニュー

メインメニュー画面の操作説明

Windows   macOS   Linux   RasPi

階層化されたメニューの最上位に位置します。

メインメニュー画面の例

メインメニュー画面の例

この画面では、メニュー選択を行います。メニューを反転すると、下部緑色文字部分に簡易的な解説を表示します。

  • ビューア : TWELITE から受信した電文を解釈して表示するビューアです。多くの場合、受信側の TWELITE には App_Wings を書き込んでおきます。
  • アプリ書き換え : ファームウェアをビルドし、接続した TWELITE に書き込みます。
  • インタラクティブモード : 接続した TWELITE 設定を、インタラクティブモードによって行います。
  • TWELITE STAGEの設定 : TWELITE STAGE アプリの各種設定を行います。
  • シリアルポートの選択 : シリアルポートを選択します。
  • 説明書 : 説明書を表示するメニューです。以下の説明書をブラウザで開きます。
    • TWELITE STAGE アプリ(この文書)
    • MWX ライブラリ
    • TWENET_C ライブラリ

1.2.1.2.2.2.1 - ビューア

ビューアについて

Windows   macOS   Linux   RasPi

ビューアは、接続した TWELITE から受信した情報を表示したり、コマンドを送ったりするための機能です。

1.2.1.2.2.2.1.1 - ターミナル

ターミナル画面の操作説明

Windows   macOS   Linux   RasPi

ターミナル画面の例

ターミナル画面の例

概要

一般的なVT100系のシリアルターミナルです。

TWELITE のインタラクティブモードやリセット制御をサポートしています。

操作

操作説明
[ A ]+ + + シーケンスの入力(インタラクティブモード)
[ A ]
長押し
この画面を抜けて、前のメニューに戻ります。
[ B ]大きなフォントで最初の画面の部分領域を表示します。
カーソルが画面中に表示されるように領域を選びますが、画面出力によっては見たい部分が見えない場合もあります。
[ B ]
長押し
折返し制御のON/OFFを変更します。
標準では折返し表示を行うようになっていますが、折り返ししないように表示することもできます。画面右端以降の文字列は表示されません。
[ C ]ファーム書換画面に移動します。
ファームウェアの開発中には頻繁にソースコードの修正、動作確認、ビルド&書き込みを行うため、ショートカットを用意しています。
[ C ]
長押し
TWELITE のリセットピンを制御し、リセットします。
ESC ESCESCキーを2回素早く入力することで、この画面を抜けます。
※ 殆どの画面ではESCキーを1回押すことで画面から抜ける操作となっていますが、ターミナルではESCキーの単独入力を使用する場合があるため、2回連続入力の割当になっています。

1.2.1.2.2.2.1.2 - 標準アプリ ビューア

標準アプリビューア画面の操作説明

Windows   macOS   Linux   RasPi

標準アプリビューア画面の例

標準アプリビューア画面の例

概要

通信相手の TWELITE には App_Twelite(標準アプリ)を書き込んでおきます。標準アプリのボタンやアナログ入力の状態のメッセージ (0x81メッセージ) を受信すると、その内容を mwm5 のパーサーライブラリにより解釈して表示します。

操作

操作説明
[ A ]割当なし
[ A ]
長押し
この画面を抜けて、前のメニューに戻ります。
[ B ]フォントを変更します。
[ B ]
長押し
テスト用のダミーデータによる画面表示を行います。
[ C ]割当なし
[ C ]
長押し
TWELITE のリセットピンを制御し、リセットします。
ESC ESCESCキーを入力することで、この画面を抜けます。

1.2.1.2.2.2.1.3 - グラフ

グラフ画面の一覧
  • 加速度リアルタイムグラフ:加速度センサーのパケットをリアルタイムで表示します。周波数領域の表示や CSV ファイルの保存ができます。
  • センサーグラフ:TWELITE 各種センサーのデータを sqlite3 データベースに保存し、グラフを表示します。

1.2.1.2.2.2.1.3.1 - 加速度リアルタイムグラフ

加速度リアルタイムグラフ画面の操作説明

Windows   macOS   Linux   RasPi

デモデータの表示例

デモデータの表示例

概要

TWELITE CUETWELITE 動作センサーPAL から受信したパケットを参照します。加速度データをリアルタイムで表示できるほか、周波数解析や CSV 出力の機能があります。

CUE モード、MOTモード、2525 FIFO モードの3種類に対応しています。

連続したサンプルが一定数(解析窓)以上になると、XYZ軸を周波数解析した表示を行います。ただし 2525 FIFO モードでは常に連続していると仮定します。

パケットの区切りが明示的である場合(直前のパケットから3秒以上経過したとき、CUEモードは1パケットごと、MOTモードはパケットのシーケンス番号が不連続になった場合)には、4サンプル分のダミーデータを挿入しピンク色の背景色を表示します。

先着順に最大4ノードまでのデータを格納します。

操作

操作説明
右上部
(i)ID# ボタン
クリックするごとにIDの切り替えを行います。
(注:FIFOモードによる連続サンプルデータは、複数IDによる運用に向きません)
右上部
(f)SMP# ボタン
クリックするごとに解析窓サイズを 64,128,256 と変更します。
右下部
(c)表示データ保存 ボタン
log フォルダにCSV形式のデータ出力を行います。
バッファにある最も古いサンプルから、画面右端の最新のサンプルまでを出力します。
(注:出力数は常に 5120 サンプルであり、末尾のデータが最新です)
右下部
PAUSE( ) ボタン
表示更新を中断します。
(注:サンプルの取得は内部の一時サンプルバッファが一杯になるまで行います)
マウスドラッグ
(グラフ部分)
表示サンプルの位置を移動します。
マウスドラッグ
(下部スクロールバー)
より大きなステップで表示サンプルの位置を移動します。
カーソルキー
サンプルの表示領域を移動させます。
カーソルキー
サンプルの横軸を拡大・縮小(等倍 / 2倍 / 3倍 / 4倍)します。
(注:解析サンプル数 256 の場合は2倍まで)

サンプルレートの推定

サンプリングレートは、パケットの受信時間から計算しています。過去複数サンプルの受信時間を平均して1サンプル分としているため、パケットの飛びなどがある場合は誤差が大きくなります。 また、関連するログ記録のタイムスタンプ(T_SMPL)も同様に推測値であり、パケット取得時と比較して遅れたタイムスタンプになります。 なお、サンプルレートの推定が終わると、グラフ表示のスクロールをスムーズにします。

CUEグラフモードの起動時に開く

[STAGE 共通設定→起動アプリ指定]にて31を指定してください。

ログ出力(表示データ保存)

(c)表示データ保存 ボタンを押すことで、画面上の表示位置(右端サンプル)を起点とした最大 512 サンプル分のデータを出力できます。

ログファイル名は {logフォルダ}/acc_snap_{タイムスタンプ}.csv です。

  • データは、画面右端の一番新しいサンプルが 512 番目(ファイルの末尾)です。
  • 周波数解析実行時は、最後のサンプルから 周波数解析サンプル数分が対象です。
  • 周波数解析対象サンプルが記録されている行に周波数解析結果を追加しています(64 サンプルの場合は 449 番目から 32 行が結果で DC 成分から高周波成分までが並びます)。
ラベル項目名説明
#サンプル
番号
T_PKT[ms]パケット
受信時刻
1パケットに複数のサンプルが含まれるため、同じタイムスタンプのサンプルが並びます。
SEQパケット
続き番号
各パケットに付与されており、連続していればパケットの欠落がないと考えられます。
T_SMPL[ms]サンプル
時刻(仮想・推定)
パケットの受信時刻から生成した各サンプルのタイムスタンプです。
実際にサンプルが行われた時刻とは一致しません。
(注:サンプルレートをパケット受信間隔から推定しているため誤差が大きくなるほか、サンプル周期を都度加算しているため実際のサンプル時刻よりも1パケット周期分遅れたタイムスタンプを記録します)
X[G]X軸のサンプル値単位はGです。センサーの値に基づいています。
Y[G]Y軸のサンプル値単位はGです。センサーの値に基づいています。
Z[G]Z軸のサンプル値単位はGです。センサーの値に基づいています。
FD#周波数解析計算値の番号周波数解析サンプル数が 64 の場合は DC,1,2,...,31 の順で並びます。
Hz周波数解析計算結果の周波数軸の値推定の周波数です。(FD# / FD_Len) * FD_Freq のように計算しています。
XX軸の周波数解析計算値
YY軸の周波数解析計算値
ZZ軸の周波数解析計算値
Label追加情報名下表参照
Info追加情報下表参照

追加情報

情報名解説
ModuleSID送信側のシリアル番号
Tick[ms]ログファイルを開いたときのシステム時間
(注:TWELITE STAGEアプリ側)
Dateログファイルを開いたときの日付
Timeログファイルを開いたときの時刻
Time_Msec_partログファイルを開いたときの秒未満部分 [ms]
Samples有効サンプルデータ
FD_Len周波数解析サンプル数
FD_Start#周波数解析開始サンプル番号
FD_Freq周波数解析範囲の周波数推定値[Hz]
(注:サンプル受信間隔からの推定)

ログ出力(自動保存)

加速度リアルタイムグラフ画面を開き、データが入力された時点から自動的にログファイルを出力します。

ログファイル名は logフォルダ/accel_{シリアル番号}_{タイムスタンプ}.csv です。

ラベル項目名説明
#サンプル
番号
T_PKT[ms]パケット
受信時刻
1パケットに複数のサンプルが含まれるため、同じタイムスタンプのサンプルが並びます。
SEQパケット
続き番号
各パケットに付与されており、連続していればパケットの欠落がないと考えられます。
T_SMPL[ms]サンプル
時刻(仮想・推定)
パケットの受信時刻から生成した各サンプルのタイムスタンプです。
実際にサンプルが行われた時刻とは一致しません。
(注:サンプルレートをパケット受信間隔から推定しているため誤差が大きくなるほか、サンプル周期を都度加算しているため実際のサンプル時刻よりも1パケット周期分遅れたタイムスタンプを記録します)
X[G]X軸のサンプル値単位はGです。センサーの値に基づいています。
Y[G]Y軸のサンプル値単位はGです。センサーの値に基づいています。
Z[G]Z軸のサンプル値単位はGです。センサーの値に基づいています。
Label追加情報名下表参照
Info追加情報下表参照

追加情報

情報名解説
ModuleSID送信側のシリアル番号
Tick[ms]ログファイルを開いたときのシステム時間
(注:TWELITE STAGEアプリ側)
Dateログファイルを開いたときの日付
Timeログファイルを開いたときの時刻
Time_Msec_partログファイルを開いたときの秒未満部分 [ms]

1.2.1.2.2.2.1.3.2 - センサーグラフ

センサーグラフ画面の操作説明

Windows   macOS   Linux   RasPi

データの表示例

データの表示例

概要

各種センサーデータを SQLite データベースに記録し、画面上にグラフ形式で表示します。データベースファイルは外部のアプリケーションから参照することも可能です。

  • データベースには SQLite (sqlite3) を使用しており、{MW_STAGE Install}/log/{実行形式名}_WSns.sqlite というファイルに格納されます。
  • 画面遷移は [一覧(グラフプレビューあり)]>[24時間データ] >[ライブビュー]です。
    • [24時間データ] から更に [年] [月] [日(グラフプレビューあり)] 選択画面に遷移できます。
  • [ライブ]表示画面について
    • 一覧から特定のノードを選択します。
    • 1秒おきのリアルタイム表示を行い、過去 450 秒間のデータを表示します。
  • [24時間データ] 表示画面について
    • 特定の日のデータを表示します。
    • 1秒おきの更新とし、その間に複数のデータがあった場合は間引かれます。
    • 最大拡大時(1ピクセル1秒)以外は、各ピクセルの範囲における取得値の平均を表示します。
    • 値が画面よりはみ出す場合は、上下端に測定点を表示します。
    • 現在時刻が含まれる場合には、新着データで表示を更新します。
    • マウスホイールやカーソルキー の入力:時間軸の拡大・縮小
    • マウスポインタの移動:マウスポインタに対応した時間軸にある取得データを簡易表示します。
      • カーソルキー :隣の取得データに移動します。
    • マウスクリック&ドラッグ:スクロール(拡大時のみ)
    • 拡大時はスクロールバーによる操作も可能です。
    • [CSV出力] 機能では、データベースに含まれるすべての取得値を表示します。

操作

操作説明
マウスドラッグ
(グラフ部分)
拡大時に表示サンプルの位置を移動します。
マウスドラッグ
(下部スクロールバー)
表示サンプルの位置を移動します。
カーソルキー
サンプルの表示領域を移動させます。
カーソルキー
サンプルの横軸を拡大・縮小します。
[ライブ]1秒刻みで最新のデータを表示するビューに移動します。
[24時間データ]1日単位のグラフに移動します。
[<<一覧]一覧選択画面に移動します。
[年] [月] [日]年月日で、特定の日を選択します。
[最新]今日のデータに移動します。
[CSV出力]1日分のデータをCSVファイルに出力します。
一覧で[表示]リストの表示方式を変更します。
一覧で[ソート]リストの並び順を変更します。
一覧で[↑]リストの並び順を反転します。

センサーノードのメモ(補助情報)の編集

v1.3.9+

「24時間データ画面」で、画面右上のセンサーノードのメモ部分を左クリックすると、メモを編集するためのプロンプトを使用できます。

センサーノードのメモを編集する様子

センサーノードのメモを編集する様子(IMEオン)

キー説明
通常の半角文字通常の半角英数文字列を直接入力した場合は画面上にも表示されます。
IME による入力IMEからの入力は画面左上部分に入力途上の文字列が表示されます。
ENTERキーで入力中の文字列を確定します。
BS表示されている末尾の文字を削除します。
ENTER入力した文字列をデータベースに反映します。

画面遷移

基本の画面は一覧、24時間、ライブの3種類に分けられます。

[一覧] <--> [24時間] <--> [ライブ]
              ↓↑
          [年月日選択]

センサーグラフモードの起動時に開く

[STAGE 共通設定 → 起動アプリ指定] にて 32 を指定してください。

DBのテーブルについて

sensor_data

受信したデータを格納します。

カラム名解説
_uqidINTEGERデータベースで使用する続き番号
sidINTEGER
int32_t
int32_t 型で格納しているシリアル番号です。
例えば “8123abcd” というシリアル番号の場合は整数値で -2,128,368,691 の値が格納されます。
tsINTEGER
int64_t
システムがパケットを受信した時刻で、int64_t 型で格納されるタイムスタンプ値です。
UNIX epoch (エポック、1970年からの経過秒) です。
ts_msecINTEGERタイムスタンプのミリ秒部分です。
yearINTEGERタイムスタンプよりローカル時間の年部分です。
monthINTEGERタイムスタンプよりローカル時間の月部分です。
dayINTEGERタイムスタンプよりローカル時間の日部分です。
hourINTEGERタイムスタンプよりローカル時間の時部分です。
lidINTEGERユーザにより割り当てられた LID などの識別値です。
lqiINTEGER受信強度の目安値です (Link Quality Indicator) 。
pkt_seqINTEGERパケットの続き番号です。どのような値を取りうるのかはファームウェアによって異なります。
pkt_typeINTEGER無線パケットの種別です。
2 PAL AMB 6 ARIA 1 PAL MAG *3 PAL MOT 5 CUE 0x101 App_Twelite *0x103 App_IO
*現時点で非対応
valueREAL計測値です(パケット種別によって定義が異なります)。
pkt_type->
2,6: 温度[°C]
1: 磁石の判定有無 (00->磁石なし, 01->N極, 02->S極)
3,5: X軸加速度(パケット中に複数サンプル含まれる場合は平均値)[G]
0x101,103: 入力IOのビットマップ(val_dioの下位8ビットと同値)
value1REAL計測値です(パケット種別によって定義が異なります)。
pkt_type->
2,6: 湿度[%]
1: 未使用
3,5: Y軸加速度(パケット中に複数サンプル含まれる場合は平均値)[G]
0x101: ADC1[V]
103: 未使用
value2REAL計測値です(パケット種別によって定義が異なります)。
pkt_type->
2: 照度[lx]
6: 未使用
1: 未使用
3,5: Z軸加速度(パケット中に複数サンプル含まれる場合は平均値)[G]
0x101: ADC2[V]
103: 未使用
value3REAL計測値です(パケット種別によって定義が異なります)。
pkt_type->
2: 未使用
6: 未使用
1: 未使用
3,5: 未使用
0x101: ADC3[V]
103: 未使用
val_vcc_mvINTEGER電源電圧[mV]
val_dioINTEGER
int32_t
b0..b7: DI1..DI8の値 (1はLOW, 0はHIGHレベル)
b24..b25: マグネット値 (b281の場合) 00->磁石なし, 01->N極, 10->S極
b28: 1の場合マグネットデータがb24..b25に格納される
b31: 定期送信ビット(マグネットのみ)
val_adc1_mvINTEGERpkt_type->
1,2,3,0x101: ADC1の計測値
val_adc2_mvINTEGERpkt_type->
0x101: ADC4の計測値
val_auxINTEGERその他データ格納目的
ev_srcINTEGERイベント発生元
ev_idINTEGERイベントID
pal_type->
5: サイコロ(1...6)
16→MOVE他資料参照
ev_paramINTEGERイベントパラメータ

sensor_node

センサーノードにテキストメモ(付加情報)を格納します。

カラム名解説
sidINTEGER上述のSID
sid_textTEXT可読性のためにSIDを16進数に変換した文字列
descTEXT
UTF-8
SIDに対応するメモ(補助情報)。一覧などで表示する

sensor_last

最後に受信したタイムスタンプを管理します。

カラム名解説
sidINTEGER上述のSID
tsINTEGER最後の受信したときのタイムスタンプ
lid以下、最後に受信時のデータの抜粋
lqi
pkt_type
value
value1
value2
value3
val_vcc_mv
val_dio
ev_id

1.2.1.2.2.2.1.4 - 簡易モニタ

簡易モニタの一覧
  • CUEビューア : TWELITE CUE からのパケットを解釈して簡易表示します
  • ARIAビューア : TWELITE ARIA からのパケットを解釈して簡易表示します
  • Glancer : TWELITE の多くの形式に対応した簡易モニタです

1.2.1.2.2.2.1.4.1 - CUE ビューア

CUE ビューア画面の操作説明

Windows   macOS   Linux   RasPi

サイコロ面の検出例

サイコロ面の検出例

概要

TWELITE CUE から受信したメッセージを解釈して表示します。

TWELITE CUE の動作

工場出荷時の TWELITE CUE は、TWELITE CUEモードに設定されています。

TWELITE CUEモードでは、コイン電池で駆動できるように間欠駆動をしながら、いくつかの要因によってスリープから起床して、様々なデータを送信します。

起床要因

TWELITE CUE がスリープから起床するには、以下のうちいずれかの要因を必要とします。

  • タイマーによる起床(定期的な起床)
  • 加速度の検出による起床
  • 磁気センサーによる起床(磁石が近づいたことを検出した場合)

送信するデータの種類

TWELITE CUE は、以下のデータをパケットに収めて送信します。

  • 検出イベント(後述
  • モジュール電源電圧
  • 磁気センサーの検出値
  • 加速度データ

パケットの属性

受信したパケットの属性からは、その基本情報を得ることができます。

属性解説
#????これまでの受信パケット数です。
種別mwm5ライブラリにおけるE_PKTの値で、パケット種別です。
TWELITE CUEからのパケットは通常PKT_PAL=02です。
ID送信元の論理IDです。通常は0..100の値になります。
AD送信元のシリアル番号です。
LQ受信強度の目安値です (Link Quality Indicator) 。
SQパケットの続き番号です。

イベント

TWELITE CUEモードでは、必ず加速度イベントを出力します。 起床要因に関わらず、起床後には一定サンプル数の加速度を計測します。このとき、加速度の計測結果に応じてイベントを判定します。

イベント番号解説
ダイス1(0x00) .. 6(0x06)定期起床と磁気センサー検出起床を起点に判定します。
起床後に大きな加速度が検出される場合は、
判定不可としたイベント(0xFF)を検出する場合があります。
ムーブ16(0x10)加速度センサーが一定以上の加速度を検出したときに、
ムーブまたはシェイクのイベントが発生します。
ムーブは、計測した加速度の変化が比較的小さい場合
(加速度の変化は検出したが、連続的な加速度の変化がなかった場合)に発生します。
シェイク0x08加速度センサーが一定以上の加速度を検出したときに、
ムーブまたはシェイクのイベントが発生します。
シェイクは、計測した加速度の変化が比較的大きい場合
(連続的な加速度の変化を検出した場合)に発生します。

電圧

モジュールの電源電圧[mV]です。

磁石

検出された磁石の極または未検出を表示します。

加速度

起床後に計測された加速度を表示します。

  • サンプル:加速度のサンプル数を表示しています。10サンプル固定です。
  • レートID:加速度のサンプルレートです。04固定で100Hzです。
  • X,Y,Z:3つの軸の加速度です。8サンプル分の平均値として求めています。単位はミリG (1000mG=1G=9.8m/s2)です。

画面の表示例

ムーブイベントの検出例

ムーブイベントの検出例

シェイクイベントの検出例

シェイクイベントの検出例

1.2.1.2.2.2.1.4.2 - ARIA ビューア

ARIA ビューア画面の操作説明

Windows   macOS   Linux   RasPi

温湿度データ表の表示例

温湿度データ表の表示例

概要

TWELITE ARIA から受信したメッセージを解釈して表示します。

TWELITE ARIA の動作

工場出荷時の TWELITE ARIA は、TWELITE ARIAモードに設定されています。

TWELITE ARIAモードでは、コイン電池で駆動できるように間欠駆動をしながら、いくつかの要因によってスリープから起床して、様々なデータを送信します。

起床要因

TWELITE ARIA がスリープから起床するには、以下のうちいずれかの要因を必要とします。

  • タイマーによる起床(定期的な起床)
  • 磁気センサーによる起床(磁石が近づいたことを検出した場合)

送信するデータの種類

TWELITE ARIA は、以下のデータをパケットに収めて送信します。

  • モジュール電源電圧
  • 磁気センサーの検出値
  • 温湿度データ

パケットの属性

受信したパケットの属性からは、その基本情報を得ることができます。

属性解説
#????これまでの受信パケット数です。
種別mwm5ライブラリにおけるE_PKTの値で、パケット種別です。
TWELITE ARIAからのパケットは通常PKT_PAL=02です。
ID送信元の論理IDです。通常は0..100の値になります。
AD送信元のシリアル番号です。
LQ受信強度の目安値です (Link Quality Indicator) 。
SQパケットの続き番号です。

温湿度データ表

TWELITE ARIAから受信した過去9回分のデータの履歴を表示します。最新のデータが最上部に表示されます。

時間[s]

TWELITE STAGE APPが起動してからデータを受信するまでの時間[秒]です。

ID

モジュールの論理デバイスIDです。

VCC(mV)

モジュールの電源電圧[mV]です。

温度(C)

モジュールが計測した温度(°C)です。

湿度(%)

モジュールが計測した湿度(%)です。

磁石

検出された磁石の極または未検出を表示します。

1.2.1.2.2.2.1.4.3 - グランサー

グランサー画面の操作説明

Windows   macOS   Linux   RasPi

概要

Glancer は、受信メッセージ中の情報を簡易的に表示します。

接続する TWELITE には App_Wings を書き込んでおくことで、通信相手のTWELITE (App_Twelite, TWELITE PAL, … アプリケーションIDと周波数チャネルを一致させれば混在も可) から受信した情報を表示できます。

操作

一覧表示の画面と選択表示の画面を切り替えて使用します。

一覧表示

一覧表示の例

一覧表示の例

通信相手からの情報を列挙します。

表示内容は(メッセージの種別、論理デバイスID、シリアルID、LQI (Lq)、電源電圧(情報に含まれている場合)、タイムスタンプ)です。

操作説明
[ A ]リストの前項目に移動します。
[ A ]
長押し
この画面を抜けて、前メニューに戻ります。
[ B ]選択表示に移行します。
[ B ]
長押し
項目をソートします。
ソートを実行するたびに、ソートキーは順に変わります。
[ C ]リストの次項目に移動します。
[ C ]
長押し
TWELITE のリセットピンを制御し、リセットします。
ESCこの画面を抜けます。

選択表示

選択表示の例

選択表示の例

一覧表示で項目を移動し反転表示になったところで選択操作を行うことで、この画面に遷移します。特定の通信相手に関する情報を到着順に表示します。

選択されてからの受信パケット数と LQI の平均値が表示されます。

操作説明
[ A ]割当なし
[ A ]
長押し
この画面を抜けて、前メニューに戻ります。
[ B ]割当なし
[ B ]
長押し
割当なし
[ C ]割当なし
[ C ]
長押し
TWELITE のリセットピンを制御し、リセットします。
ESC選択画面に戻ります。

1.2.1.2.2.2.1.5 - コマンダー

コマンダー画面の操作説明

Windows   macOS   Linux   RasPi

概要

コマンダーは、TWELITE にシリアルメッセージを送信する機能です。

操作

コマンダーの最初の画面は留意事項について記載しています。

画面上部にはテキストで表現されたタブがあり、これをマウスでクリックすることでタブ中の画面に移動できます。

操作説明
[ A ]タブの移動(左)
[ A ]
長押し
この画面を抜けて、選択画面に戻ります。
[ B ]割当なし
[ B ]
長押し
割当なし
[ C ]タブの移動(右)
[ C ]
長押し
TWELITE のリセットピンを制御し、リセットします。
ESCこの画面を抜けて、選択画面に戻ります。

タブ:TWELITE

この画面では、 標準アプリ(App_Twelite)0x80コマンドを生成し、送信します。

接続する TWELITE には App_Twelite または 親機・中継機アプリ(App_Wings) を書き込んでおき、アプリケーションID・チャネルを設定した上で、通信相手からメッセージが受信されていることを確認してください。

TWELITEタブの表示例

TWELITEタブの表示例

項目内容
宛先送信先の TWELITE を指定します。
自身が子機の場合は「親機:0」宛を指定してください。
自身が親機の場合は「全子機=0x78」または特定の子機ID(1..8まで指定可能)を指定します。
DI1..DI4DI1からDI4までの設定状態です。
■は選択(LOW=GNDレベル)、□は(HIGH=VCCレベル)を意味します。
下項目のSELを指定してください。
SEL各DIの選択ビットです。
(0ならDIの指定を無視し、1なら指定を有効化します。)
PWM1..4PWMのデューティ比を設定します。
0はGNDレベル相当、1024(100%)はVCCレベル相当です。
N.A.にしたPWMポートは変更しません。
(注:MW-STA-KIT-0/MW-STA-SOLO-0基板のPWM1はVCCからの吸い込みとなっているため、
 LEDは0のときに最も明るく点灯し、100%で消灯します。)

タブ:NOTICE

この画面では、通知PAL(NOTICE PAL)LED制御コマンド を生成します。

接続する TWELITE には App_Wings を書き込んでおき、アプリケーションID・チャネルを設定した上で、通信相手からメッセージが受信されていることを確認します。

TWELITEタブの表示例

TWELITEタブの表示例

項目内容
宛先送信先の TWELITE PAL の ID を指定します。
値の範囲は 1..8 です。
点灯色を7色から指定します。
白は2種類ありますが、一方はRGBの混色でもう一方は白色LED単体が点灯します。
明るさ0..15で指定します。0は消灯です。
点灯点滅点灯または点滅パターンを選択します。
点灯時間コマンド発行後、一定時間経過すると自動的に消灯する機能です。
消灯(x)消灯メッセージを生成し、LEDを消灯させます。
点灯(SPACE)現在の設定を送信し、LEDを点灯させます。

画面下部の表示

画面下部には、コマンドが生成されたタイムスタンプと :で始まるコマンドが表示されます。クリップボードにはこの画面の内容がコピーされます。

1.2.1.2.2.2.2 - アプリ書換

アプリ書換の機能について

Windows   macOS   Linux   RasPi

アプリ書換機能では、TWELITE のアプリ(ファームウェア)を書き込むことができます。

  • ビルド済みの.BINファイルを書き込む
  • アクト(act)などのソースファイルからビルドして書き込む

ソースファイルのビルド、ターミナル切断、書き込みユーティリティ起動、ターミナル接続といった煩雑さを解消できます。

  • TWELITE を自動で認識する
  • 書き込み終了後にリセットしてからインタラクティブモードまたはターミナルに遷移する
  • 各プロジェクトのリストから、プロジェクトフォルダまたはVSCode等の環境を起動する (Raspberry Pi版を除く)
  • 各プロジェクトのリストから、関連情報のウェブページを開く (Linux版、Raspberry Pi版を除く)

1.2.1.2.2.2.2.1 - BINから選択

BINから選択の画面の操作説明

Windows   macOS   Linux   RasPi

概要

ビルド済みのアプリ(.BINファイル)を書き込むことができます。

BINから選択画面の例

BINから選択画面の例

メニューを選択すると、.BINファイルの一覧が表示されます。書き込むファームウェアを選択してください。

あらかじめ用意されている.BINファイルとは別のファイルを使用する際は、メニューを選択する前に書き込むファイルを以下に格納してください。

プラットフォーム場所
Windows, macOS, Linux, Raspberry Pi{MWSTAGEフォルダ}/BIN

BINフォルダには、ファイル名を変更せずに TWELITE STAGE でビルドした .BINファイル(各プロジェクトのbuildフォルダ以下に格納されています)を格納してください。

../BIN/App_Wings_MONOSTICK_BLUE_L1304_V1-1-3.bin
       App_Wings_MONOSTICK_RED_L1304_V1-1-3.bin
       App_Twelite_BLUE_L1304_V1-9-1.bin
       App_Twelite_RED_L1304_V1-9-1.bin
       ...

1.2.1.2.2.2.2.2 - actビルド&書換

actビルド&書換の画面の操作説明

Windows   macOS   Linux   RasPi

概要

MWX ライブラリによって記述されたアクト(act)のビルドと書き換えを行うことができます。

サンプルアクト選択画面の例

サンプルアクト選択画面の例

この画面では、以下のパスに配置されたアクトによるプロジェクトの一覧を表示します。

{MWSTAGEインストールフォルダ}/MWSTAGE/Act_samples

操作

一覧から書き込むプロジェクトを選択することで、ビルド~書き込みを行えます。

なお、書き込み終了後に ENTER または[ B ]ボタンを押すことで、TWELITE をリセットしてインタラクティブモード画面(もしくはターミナル画面、要設定)に遷移できます。

ビルド~書き込み画面

操作説明
[ A ]メニュー選択↑
[ A ]
長押し
この画面を抜けて、選択画面に戻ります。
[ B ]選択
[ B ]
長押し
関連ウェブサイトをOS標準のブラウザで開きます。
(プロジェクトフォルダの000desc.txtに登録されている場合)
[ C ]メニュー選択↓
[ C ]
長押し
フォルダ(プロジェクト、関連フォルダ)を開きます。
設定メニューでVS Codeで開くように設定できます。
ESCこの画面を抜けて、アプリ書換メニューに戻ります。
マウスクリック[ヘルプ]関連ウェブサイトを開きます。
マウスクリック[フォルダ] または [VSCode]関連フォルダを開きます。
マウスクリック [▽] または [△]次ページ、前ページに移動します。

1.2.1.2.2.2.2.3 - TWELITE APPSビルド&書換

TWELITE APPSビルド&書換の画面の操作説明

Windows   macOS   Linux   RasPi

概要

TWENET C ライブラリによって記述された TWELITE APPS のビルドと書き換えを行うことができます。

アプリ選択画面の例

アプリ選択画面の例

この画面では、以下のパスに配置されたプロジェクトの一覧を表示します。

{MWSTAGEインストールフォルダ}/MWSTAGE/Wks_TweApps

操作

一覧から書き込むプロジェクトを選択することで、ビルド~書き込みを行えます。

なお、書き込み終了後に ENTER または[ B ]ボタンを押すことで、TWELITE をリセットしてインタラクティブモード画面(もしくはターミナル画面、要設定)に遷移できます。

ビルド~書き込み画面

操作説明
[ A ]メニュー選択↑
[ A ]
長押し
この画面を抜けて、選択画面に戻ります。
[ B ]選択
[ B ]
長押し
関連ウェブサイトをOS標準のブラウザで開きます。
(プロジェクトフォルダの000desc.txtに登録されている場合)
[ C ]メニュー選択↓
[ C ]
長押し
フォルダ(プロジェクト、関連フォルダ)を開きます。
設定メニューでVS Codeで開くように設定できます。
ESCこの画面を抜けて、アプリ書換メニューに戻ります。
マウスクリック[ヘルプ]関連ウェブサイトを開きます。
マウスクリック[フォルダ] または [VSCode]関連フォルダを開きます。
マウスクリック [▽] または [△]次ページ、前ページに移動します。

1.2.1.2.2.2.2.4 - Act_extras

Act_extras画面の操作説明

Windows   macOS   Linux   RasPi

概要

MWX ライブラリによって記述されたアクト(act)のビルドと書き換えを行うことができます。

アクト選択画面の例

アクト選択画面の例

この画面では、以下のパスに配置されたアクトによるプロジェクトの一覧を表示します。

{MWSTAGEインストールフォルダ}/MWSTAGE/Act_extras

操作

一覧から書き込むプロジェクトを選択することで、ビルド~書き込みを行えます。

なお、書き込み終了後に ENTER または[ B ]ボタンを押すことで、TWELITE をリセットしてインタラクティブモード画面(もしくはターミナル画面、要設定)に遷移できます。

ビルド~書き込み画面

操作説明
[ A ]メニュー選択↑
[ A ]
長押し
この画面を抜けて、選択画面に戻ります。
[ B ]選択
[ B ]
長押し
関連ウェブサイトをOS標準のブラウザで開きます。
(プロジェクトフォルダの000desc.txtに登録されている場合)
[ C ]メニュー選択↓
[ C ]
長押し
フォルダ(プロジェクト、関連フォルダ)を開きます。
設定メニューでVS Codeで開くように設定できます。
ESCこの画面を抜けて、アプリ書換メニューに戻ります。
マウスクリック[ヘルプ]関連ウェブサイトを開きます。
マウスクリック[フォルダ] または [VSCode]関連フォルダを開きます。
マウスクリック [▽] または [△]次ページ、前ページに移動します。

1.2.1.2.2.2.2.5 - 指定

プロジェクトを指定した書き込み

Windows   macOS   Linux  

フォルダまたは.BINファイルを TWELITE STAGE APP の画面にドラッグ&ドロップすることで、特定のプロジェクトを書き込むことができます。 ドロップした対象のビルドや書き込みを行うときに選択します。

1.2.1.2.2.2.2.6 - 再書換

直前に書き込んだプロジェクトの再書き込み

Windows   macOS   Linux   RasPi  

直前に書き換え・指定したプロジェクトを再選択します。

1.2.1.2.2.2.2.7 - ビルド・書換画面

ビルド・書換画面の操作説明

Windows   macOS   Linux   RasPi  

ここでは、プロジェクトのビルドや書換を行うときに表示される画面の操作説明を行います。

ビルド中

ビルド(コンパイル)中の画面です。ビルドコマンドの内容は、コンソール画面に出力されます。画面中の ... はビルドしたファイル数、下部の暗い色の表示はビルドしているファイル名です。

コンパイル中の画面の例

コンパイル中の画面の例

ビルドエラー

ビルドエラーが発生した場合は、上記のような画面を表示します。再ビルドの実行やエラーログの表示を行うことができます。また、一定時間でタイムアウトして直前のメニューに戻ります。

エラー表示画面の例

エラー表示画面の例

画面上のエラーメッセージは、代表的なものだけが表示されます。ビルドが失敗したとき、エラー内容のメッセージが表示されないこともあります。

操作説明
[ A ]割当なし
[ A ]
長押し
この画面を抜けて、前のメニューに戻ります。
[ B ]エラー時に再ビルドします。
[ B ]
長押し
割当なし
[ C ]
[ C ]
長押し
エラーログを表示します(Windows/macOS)。
保存場所は{プロジェクトフォルダ}/build/builderr.logです。
ESCこの画面を抜けて、書換メニューに戻ります。
ENTERエラー時に再ビルドします。

書換中

ビルドが成功すると、ファームウェアを書き込む画面を表示します。

書換中画面の例

書換中画面の例

書換失敗

書換がエラーの場合は、下記のような画面を表示します。

書換失敗画面の例

書換失敗画面の例

操作説明
[ A ]
長押し
この画面を抜けて、選択画面に戻ります。
[ B ]再度書換を行う
(直前の書き換えメニューに戻ります。
 自動的にメニュー項目が選択されるため、
 もう一度[ B ]を押すことで再書換できます)
ESCこの画面を抜けて、書換メニューに戻ります。

書換完了

書換が無事に成功すると、下記のような画面を表示します。

書換完了画面の例

書換完了画面の例

操作説明
[ A ]
長押し
この画面を抜けて、選択画面に戻ります。
[ B ]TWELITE をリセットして、
インタラクティブモード画面(または設定によりターミナル)画面に移動します。
ESCこの画面を抜けて、書換メニューに戻ります。

1.2.1.2.2.2.3 - インタラクティブモード

インタラクティブモードの利用

Windows   macOS   Linux   RasPi

概要

この画面から、接続した TWELITE のインタラクティブモードを利用できます。

インタラクティブモード画面の例

インタラクティブモード画面の例

この画面はターミナルとほぼ同じ振る舞いをしますが、インタラクティブモードに遷移するための操作と離脱の検出を行うなど、インタラクティブモードに固有の機能を追加しています。

  • 接続する TWELITE には、インタラクティブモードに対応したファームウェアをあらかじめ書き込んでおく必要があります。
  • TWELITE の入出力を使用するため、シリアル通信に文字化けなどが発生した場合など、期待通りにインタラクティブモードへの遷移や離脱ができない場合もあります。
  • マウス操作には対応しておりません。キーボード(カーソル での操作は可能)操作を行ってください。

インタラクティブモード画面の動作フロー

以下に大まかな処理の流れを記載します。

[画面黒背景にする]
  ↓
[TWELITEのリセット (制御可能ならSET=LO)]
  ↓
<間欠動作アプリのインタラクティブモードメッセージを検出?> --YES--> [操作画面]へ
  ↓タイムアウト
['+' を3回入力]
  ↓
<通常アプリのインタラクティブモードメッセージを検出?> --YES--> [操作画面]へ
  ↓タイムアウト
[操作画面へ] ※ この状態はインタラクティブモードではない

[操作画面]
  ↓
<インタラクティブモード脱出メッセージ?> --> [終了]
  ↓
<画面離脱操作 [ A ] 長押しなど> --> [終了]
  ↓
 -> <入力中判定> --NO-> [終了]
  ↓            ↓
[入力文字列をTWELITEへ送信]
  ↓
[操作画面]へ戻る

[終了]
  ↓
[TWELITEのリセット]
  ↓
[画面離脱] インタラクティブモード画面を終了し前の画面へ戻る

1.2.1.2.2.2.4 - TWELITE STAGE の設定

TWELITE STAGE APP の設定

Windows   macOS   Linux   RasPi

概要

この画面から、TWELITE STAGE APP の各種設定を行います。

設定画面の例

設定画面の例

以下の解説のメニュー中には、プラットフォームによっては存在しない項目がありますが、全てを列挙して解説します。

共通メニュー以外の色設定については、解説を省略します。

ルートメニュー

共通設定
 ターミナル
 標準アプリ ビューア
 グラフ表示 (加速度リアルタイム/センサー)
 簡易モニター (CUA/ARIA/Glancer)
 グランサー(簡易モニタ)
 コマンダー
 アプリ書換
 インタラクティブモード
セーブデータ ユーティリティ(ダンプ/消去)
情報

共通設定

a: (      0x00) 起動アプリ指定
G: (      0x00) 画面サイズ・描画方法
F: (          ) シリアルデバイスID
f: (0x00FFFFFF) 文字色
b: (0x005A0032) 背景色
B: (    115200) ボーレート
設定内容
起動アプリ指定TWELITE STAGE始動時にビューアアプリに移動する設定です。
設定値は1..{ビューアアプリメニューで列挙されている数}です。
注:シリアルデバイスIDを設定しておかないと、
始動時に接続するシリアルデバイス選択画面で入力待ちになります。
画面サイズ・描画方法(M5Stack版を除く)XYの2桁の文字で指定します(X:画面サイズ Y:描画方法)。
X 0:640x480 1:1280x720 2:1280x960 3:1920x1440 4:2560x1440 5:320x240
Y 0:LCD風 1:CRT風 2:ぼやけ 3:ブロック
シリアルデバイスID(M5Stack版を除く)設定はシリアルデバイス名または数値の1..9を指定します。
注:数値の場合はデバイス列挙順になります。
文字色・背景色文字色、背景色を指定します。
共通設定の色設定値は他の画面の設定にも継承されます。
他の画面で未設定の場合は共通設定の色設定が採用されます。
色はRGB 24bitを16進数で指定しますが、内部的には16bit 565形式に値が丸められます。
ボーレートTWELITE 側のボーレートが 115200 ではない場合に、ターミナルなどの表示が化けないように設定します。

アプリ書換

f: (0x00FFFFFF) 文字色
b: (0x005A0032) 背景色
j: (         0) ビルド時のmakeジョブ数
v: (         0) codeでフォルダを開く(VSCode)
l: (         0) LTOを行わない
n: (         0) 書換完了後の画面
設定内容
ビルド時のmakeジョブ数(M5Stack版を除く)ビルドを行う際の並列ジョブ数です。適切な数を設定することでビルド時間の短縮を期待できます。
規定値0は(物理プロセッサ数-1)でジョブ数を計算しています。
目安としては論理プロセッサ数を上限とすると良いでしょう。
codeでフォルダを開く (VSCode)(VSCodeのインストールが必要)1を設定することでOS標準のフォルダウインドウの代わりにcodeコマンド(VSCode)でフォルダを開きます。
実行ファイルTWELITE_Stage_VSCodeではデフォルトで1に設定されています。
書換完了後の画面(M5Stack版を除く)1を設定することでインタラクティブモード画面の代わりにターミナルを開きます。
2を設定することで、書換メニューに戻ります。
TWELITE_Stage_VSCodeでは2に設定されています。
LTOを行わない(Windowsのみ)1を設定すると、WindowsのコンパイラでLTOを行いません。
LTOは比較的小さなバイナリを生成できる一方でリンクに時間を要します。
LTOを省略することでより高速なリンクが実現できます。

セーブデータユーティリティ

r: Read sector.
R: Read ALL sectors.
e: Erase sector.
E: Erase ALL sectors.

この画面は、データセーブ領域のメンテナンスを行うユーティリティです。EEPROM(64バイトを1セクタとして最大60セクタ、3840バイト)をエミュレートします。

設定内容
rセクタを読み出します。
0..59を入力すると、入力したセクタ番号のセクタの内容を表示します。
RYESを入力すると全セクタの読み出しを行いますが、末尾の部分のみを表示します。
eセクタを消去(0xFF)します。
0..59を入力すると、入力したセクタ番号のセクタが消去されます。
EYESを入力すると全セクタを消去します。

1.2.1.2.2.2.5 - シリアルポートの選択

シリアルポートの選択

Windows   macOS   Linux   RasPi

概要

この画面では、シリアルポートを再選択できます。

シリアルポート選択画面の例

シリアルポート選択画面の例

1.2.1.2.3 - ログ機能

TWELITE と PC 間のログ機能

Windows   macOS   Linux   RasPi

TWELITE と PC 間のシリアル通信のログを記録できます。

操作

記録開始

Alt(⌘)+L を押します。

ログの開始画面の例

ログの開始画面の例

記録終了

記録中に再度 Alt(⌘)+L キーを押します。

ログの終了画面の例

ログの終了画面の例

ログの記録が終了し、その時点のログファイルをOS標準の方法(Windowsはメモ帳、macOSはコンソール.app)で開きます。

仕様

ログの記録

TWELITE から受信した文字列は、そのまま記録されます。

TWELITE に送信した文字列は、1文字ずつ記録されます。 Windowsの場合は 「 」、 macOS / Linux / RaspBerryPi は « » で囲われます。 例えば«t»とある場合は、キーボードからtを入力したことを意味します。

ログ記録のフォルダとファイル名

{TWELITE STAGE APP の実行形式のあるフォルダ}/log にログ開始時の日時を元にしたファイル名で保存されます。

Alt(⌘)+Shift+L を押すことで、そのフォルダを開きます。

ログ出力フォルダの例

ログ出力フォルダの例

1.2.1.3 - 詳細な仕様

TWELITE STAGE APP の詳細な仕様

1.2.1.3.1 - コマンドライン引数とiniファイルによる詳細設定

コマンドライン引数とiniファイルによる TWELITE STAGE APP の詳細設定

コマンドライン引数

コマンドライン引数は、TWELITE STAGE APPのいくつかの細かい設定を行います。

コマンドライン引数内容
-E 0フェードアウトのようなグラフィカルな効果を無効にする。
-R {type}{type} 値でレンダリングタイプを設定します。
0: デフォルト
1: OpenGL
2: DirectX(Windows) Metal(macOS)
3: ソフトウェア
-Jゲームコントローラーを有効にします。
-x {x_pos},
-y {y_pos}
起動時のTWELITE STAGE Appのグラフィカルウィンドウの位置を設定します。
{x_pos}と{y_pos}はウィンドウの左上のスクリーン座標です。

iniファイル

iniファイルはTWELITE STAGE APPの基本的な設定(MWSDKのフォルダを参照するなど)を行うために使用されます。

iniファイル名は{TWELITE STAGE APPの実行ファイルのベース名} + .ini です。 通常は TWELITE_Stage.ini となります。

;;; MWSDKの参照を変更します。
; MWSDK=MWSDK
mwsdk=mwsdk2020_10

;;; インターフェース言語
; LANG=en

;;; ウィンドウのジオメトリ
GEOM_X=200
GEOM_Y=100

シンタックス

  • ini ファイルはプレーンテキストファイルとして記述される。
  • キーと値は = で区切られた1行に格納される (例: KEY=value)。
  • キーと値の文字列は行頭から始まる(キーの前に空白や他の文字は許されない)。
  • キーと値の間にスペースを入れてはならない。
  • コメント行は ; または # を行頭に追加する。

設定

キー
MWSDKMWSDKのフォルダを変更する。デフォルトのフォルダは、TWELITE STAGE APPの実行ファイルが置かれているのと同じフォルダにある MWSDK です。古いMWSDKやカスタムMWSDKを使用する必要がある場合は、そのフォルダの名前を指定することができます。
LANGLANG=en は、ユーザーインターフェースの言語をデフォルト(日本語)から英語に変更します。
GEOM_X, GEOM_YTWELITE STAGEアプリのウィンドウが表示される場所を変更する。

異なる設定の TWELITE STAGE APP を実行する

異なる設定の TWELITE STAGE APP が必要な場合は、TWELITE STAGE APPと同じフォルダに実行ファイルをコピーして、同じ名前の .ini ファイルを作成します。

例えば、英語のインターフェースを使用する場合、TWELITE_Stage.exe(注: .exe はWindowsの実行ファイルの拡張子)を TWELITE_Stage_en.exe にコピーして、 LANG=en の設定を TWELITE_Stage_en.ini に書き込むことで、英語のインターフェースを有効化した実行ファイルを作成できます。

  TWELITE_Stage.exe
  TWELITE_Stage.ini | 特別な設定なし

  TWELITE_Stage_ja.exe | TWELITE_Stage.exe のコピー
  TWELITE_Stage_en.ini | LANG=en が設定されている。

1.2.1.3.2 - 環境変数

TWELITE STAGE APP が使用する環境変数

内部的に設定される環境変数

環境変数解説
MWSDK_ROOT標準では TWELITE STAGE APP の実行形式が格納されるフォルダにある MWSDK フォルダ(つまり../MWSTAGE/MWSDK)が指定されます。 MWSDK.iniが指定される場合は、指定されたフォルダ名を採用します。
MWSDK_TWENET_LIBSRCサンプルコードやTWELITE APPSのソースコードフォルダには、Microsoft社の Visual Studio Code (VS Code) 用の定義ファイルを予め作成しています。この定義ファイル中にVS Codeエディタ中でコード解釈を行う目的でライブラリソースコードの参照先を指定しますが、この環境変数を用いています。
MWSDK_TWENET_LIBSRC環境変数が適切に指定されると、MWSDK以下ではないプロジェクトフォルダでもコード解釈が行われ、ライブラリ関数名の補完などが機能します。(参考
LANG=Cツールチェインのメッセージを規定の言語(英語)にするため、明示的に設定しています。
PATHWindowsでは、SDK添付のmsysユーティリティへのPATHを追加します。
MWSDK_MAKE_JOBS
MWSDK_MAKE_DISABLE_LTO
VS Codeの設定定義で利用します。
JOBS : STAGE APPで設定された並列ビルド数を渡します
DISABLE_LTO : LTOを無効化します( Windows )

参考

.vscode/settings.json の設定例(抜粋)

    "C_Cpp.default.includePath": [
        "${env:MWSDK_TWENET_LIBSRC}/include/**",
        "${env:MWSDK_TWENET_LIBSRC}/src/**"
    ],
    "C_Cpp.default.browse.path": [
        "${env:MWSDK_TWENET_LIBSRC}/include/**",
        "${env:MWSDK_TWENET_LIBSRC}/src/**"
    ],

"../../"で始まる定義は、TWELITE STAGEアプリからプロジェクトを開く場合は不要です。環境変数MWSDK_TWENET_LIBSRCを設定しない場合に、既定のフォルダ構成の時にソース参照先を指定しています。

1.2.1.3.3 - 000desc.txt によるプロジェクト説明の追加

000desc.txt によるプロジェクト説明の追加方法について

プロジェクトフォルダに000desc.txtを作成した場合には、TWELITE STAGE APP が、プロジェクトフォルダの一覧にその内容を表示します。

000desc.txtの表示例

000desc.txtの表示例

ファイルは UTF-8 形式のプレーンテキストで記述します。書式は以下の2種類があります。

書式1

スイッチを押した時にLEDを点灯
act4はTWELITE DIPに接続されたスイッチを押した時にLEDを点灯させるactを動作させます。
https://mono-wireless.com/jp/products/act/index.html
  • 1行目はタイトル行です。
  • 2行目以降は詳細の記述です。
  • 最終行が http で始まる場合は、ウェブサイトへのリンクになります。

書式2

[JAPANESE]
TITLE=actのテンプレート
DESC=中身が何もない setup(), loop() のみのファイルです。
新しく act を記述するのに利用してください。
URL=jp/MWX/content/Act_samples/README.html
[ENGLISH]
TITLE=act empty template
DESC=This act file only contains empty setup() and loop(),
which is intended to write a new act.
URL=en/MWX/content/Act_samples/README.html

iniファイルのような書式です。行頭から始まる項目名と=文字までを項目の定義として=以降が項目の内容です。

項目定義詳細
[JAPANESE], [ENGLISH]ブロックの区切り
TITLE=タイトル行
DESC=詳細の記述。改行を含めて複数行にすることもできます。
URL=ウェブサイトまたはファイルへのリンク

URL 指定について

URL=詳細
https:, http: で始まるそのアドレスを開きます
それ以外{MWSDK_ROOT}/docs/ を起点とした相対フォルダを指定します。
a/b/c.html とした場合は {MWSDK_ROOT}/docs/a/b/c.html に変換されます。

1.2.1.4 - ライセンス

ライセンスについて

モノワイヤレス 株式会社が配布するTWELITE_Stageの実行形式は MW-SLA-1J,1E が適用されます。

利用したオープンソース成果物

高品質なソースコードを提供いただいたオープンソースプロジェクトに感謝いたします。

名前記述
SDL2Simple DirectMedia Layer Copyright (C) 1997-2020 Sam Lantinga
getoptCopyright (c) 1987, 1993, 1994The Regents of the University of California. All rights reserved.
regexregex - Regular expression pattern matching and replacementBy: Ozan S. Yigit (oz) Dept. of Computer Science York University
printfCopyright (c) 2014 Marco Paland
東雲フォント2001 The Electronic Font Open Laboratory http://openlab.ring.gr.jp/efont/
M+ BITMAP FONTSCopyright 2002-2005 COZ coz@users.sourceforge.jp
SQLiteC++Copyright (c) 2012-2021 Sebastien Rombauts (sebastien.rombauts@gmail.com)
sqlite3All of the code and documentation in SQLite has been dedicated to the public domain by the authors.

1.2.1.5 - 改訂履歴

TWELITE STAGE APPの改訂履歴

ソースコードの変更履歴は https://mwm5.twelite.info/changes および https://github.com/monowireless/mwm5 を参照してください。

プラットフォームによっては、配布中の最新バージョンと改訂履歴の最新バージョンが一致しない場合があります。

1.3.8 MWSTAGE2022_08収録版

メジャーバージョンアップ。

  • 内部描画解像度を320x240から640x480ピクセルに変更
  • 加速度センサーのリアルタイムグラフの追加
  • センサーデータの保存とグラフ表示を行うセンサーグラフを追加
  • 英語表示に対応
  • 主要マニュアルをローカルhtmlファイルに変更

1.0.8 MWSTAGE2021_09収録版

  • [ A ] [ B ] [ C ]ボタンで、ポインタから外れたボタンが残ってしまう場合があった
  • STAGE APPでEnter入力の際にTWELITEに対してCRLFを送信するようにした
  • MacのFTDIライブラリを更新しApple Silicon(M1)でもシリアル仲介プログラムを利用しなくても、動作できるようになった
  • Windowsでmsysツール群のPATHを内部設定し、期待しないmakeが呼び出されないようにした
  • TWELITE未接続でも書き込み画面に移動できるようにした(B,Rキーを入力し、対象のTWELITEモデルを指定する)
  • VSCodeを利用する設定を行った場合は、actやTweAppsを選択したときに、ビルドを実行せず、build/以下の.binファイルを書き込む画面を開くようにした。(ビルドはVSCodeから実施します)
  • いくつかの環境変数を内部的に設定し、TWELITE STAGEから起動したVSCodeにこれらを参照させることで、VSCodeから適切なビルドを実行、VSCodeのコード解釈に対して適切なライブラリソースを参照できるようにした
  • MWSDKフォルダ以下にサンプルコードが格納されているが、ビルド対象のフォルダをドロップすることで、MWSDK以外のフォルダでもビルドや書き込み作業をできるようにした(フォルダ名に空白や日本語文字などが含まれてはいけません)
  • 始動時のコンソール画面に、内部のフォルダ設定や環境変数の設定内容を表示するようにした
  • 終了時は1秒待ってからSTAGE APPを終了するようにした

1.0.7pre2

  • Raspberry Pi の対応を強化 (1.0.7pre2)
    • serial0 の対応(TWELITE STAGE HAT)
    • Zero 向けビルドを追加(対応ライブラリでビルド&描画フェード機能を無効化)
    • X11 デスクトップ向けビルドを追加
  • 一般のFTDIデバイス(FT232,FT230)でも利用できるようにした。ファームウェア書き込みモードは手動で行う必要があります
  • Windowsで、シリアルポート選択画面でcキーを押すことでWindowsで割り当てられているCOMポートを表示する機能を追加した
  • ボーレートを115200bpsから変更できるようにした
  • 描画フェード機能を無効にするコマンドラインオプション(-E 0)を追加。

1.0.3 MWSTAGE2020_12収録版

  • TWELITE CUE対応(パーサー・CUEビューア)
  • 書換メニューで、書き込み時にベリファイ(比較)を行うようにした。
  • Apple Silicon暫定対応(TWELITE_Stage.command はユニバーサルアプリ、シリアル処理用の外部コマンドsersrv_ftdi.command、Toolsは Rosetta2 で動作可能な intel バイナリを再ビルド、シリアル通信は外部コマンド経由のため遅くなります)
  • フォルダ構成で MWSTAGE/MWSDK/Tools を MWSTAGE/Toolsに移動した。(MWSDKをMWSDK_COMMONレポジトリをそのまま利用できるようにするため)
  • TWELITE_Stage.ini (起動ファイル名から拡張子を取り除き .ini を付加) を、起動時に読み込みMWSDKフォルダを選択できるようにした。(古い版のライブラリ一式を簡単に切り替えられるようにした)
  • 画面描画用のSDL2ライブラリを 2.0.12 に変更した (Windows, MacOS, RaspberryPi)。
  • Windows では static ビルドとして DLL ファイル不要とした。
  • make -j による並列ビルド数を(物理CPU数 - 1)とした。
  • 書換メニューのいくつかの場所で、シリアルポートの再オープンを明示的に行うようにした。デバイスの抜き差しを行ったときなどにUSB接続が切断した場合などに、復帰しやすいようにした。
  • Alt(Cmd)+Shift+m, t で mwx, twesettings を開くとき TWENET/usever.mk 記載のフォルダを
  •  開くようにした。
  • [Raspberry Pi] 初回起動時に /dev/serial0 での書込メニュー遷移が失敗する問題を修正。

既知の問題

  • 起動時にAlt(Cmd)押し下げ時のヘルプメッセージが出現しない場合がある。Alt(Cmd)+0を入力することで表示されます。
  • 書換メニューでファイル名が長すぎる場合に、行の行事が乱れる場合がある。
  • Apple Siliconでの動作については十分な検証を行っていません。

0.9.11 MWSTAGE2020_10, Raspberry Pi 版 (暫定版)

(※包括的な検証を実施しないバージョンです)

  • Raspberry Pi での動作
  • その他、機能調整

0.9.9 - MWSTAGE2020_10収録版

  • 最上位メニューにも [ウェブ] ボタンを追加し、関連リンクをブラウザで開けるようにした。
  • Linux版のフォルダ、ウェブ、VS Code で開く機能を実装した。
  • TWELITE が頻繁に UART 出力している場合に、書き込みメニューへ遷移しづらいことがあった

0.9.8a

https://github.com/monowireless/TWELITE_STAGE_Bin_M5Stack/releases/tag/0.9.8a

M5Stack版で MW-SLA-1J,E / MW-OSSLA-1J,E のデュアルライセンスとし、readme-j.txt を更新した。

0.9.8

ビューア一覧表示に[ウェブ]ボタンを追加し、関連サイトを開く機能を追加など。

改定内容

  • ビューア>コマンダーの追加
    • 標準アプリ 0x80 コマンド
    • NOTICE PALのLED制御 (App_Wingsにコマンドを送付)
  • ビューア>PALビューアのNOTICE PAL対応。
  • Act_extrasのメニューを追加
    • Act_samplesより高度なもの
    • 外部のオープンソースライブラリ(センサー手続きなど)を利用したもの
  • マウスによる操作を拡大 (リスト、ボタン、タブ)
    • マウス移動でフォーカス、左クリックで確定、右クリックは[ESC]キー入力
  • 画面表示負荷の低減
    • アプリケーションがバックグラウンドの時はスクリーンセーバーを無効にした
    • アプリケーションがバックグラウンドの時は、描画回数を減らして CPU 負荷を減らした
  • ビルドプロジェクト(act, TWE_Apps, Act_extras)の一覧の機能強化
    • 項目選択時に下部に概要を表示 (000desc.txtを読み込む。TWE_Descクラスにより処理)
    • プロジェクトフォルダを開く(またはVSCodeで開く)機能
    • 関連ウェブサイトを開く機能
    • ALt+Shift+m mwxライブラリ、Alt+Shift+t twesettingsライブラリを開く機能
    • ビルドメニュー中で選択中のフォルダやビルドエラーファイルを開けるようにした。
  • ログ(シリアルポート入出力)機能の追加
    • (Alt/Cmd+L)でログの開始・終了
    • ログファイルを {TWELITE_Stage 実行形式のあるフォルダ}/log に格納
    • ファイル名は twestage_{日付-時刻}.log
    • Shift+Alt/Cmd+L でログファイルフォルダを開く
  • その他、変更・修正など
    • シリアル(FTDI)デバイス名、IDの表示方法を変更
    • App_UARTでインタラクティブモードに遷移しなかった問題を修正
    • フォルダドロップ時の挙動を変更した (これまではバイナリ書き込みになる場合があったが、メニュー遷移とした)
    • ターミナル長押し時[C]でリセットに加え、画面クリアするようにした。

既知の問題

  • M5Stack で設定を保存するときにハングアップし、設定内容が初期化される場合があります。

0.8.9

2020_05 リリース版

  • ウインドウアイコンの追加
  • BINファイル一覧画面での最大リスト数の制約を緩和 (win/linux/mac)
  • Glancerビューアの追加
  • 解説文面等の調整
  • コンソール画面の描画の調整
  • ファーム書き込み後の移動先画面(インタラクティブモードかターミナルか)の設定が動作していなかった
  • Alt(or Cmd)+W の割り当てを変更
  • その他不具合の修正

0.8.6

Linux 版リリース初版

0.8.5

リリース初版

1.3 - TWELITE APPS

信号伝達やシリアル通信など、すぐに使える専用ファームウェア
TWELITE APPS - トワイライトアプリはTWELITEのソフトウエア開発を行わずにそのまま使えるレディメイドソフトウエアです。

インタラクティブモードとは

インタラクティブモードは、 TWELITE APPS の詳細設定を行うモードです。

複数のグループで通信したい場合や、通信エラーを減らしたい場合等に必要な設定を行うことができます。

PC との接続

TWELITE の場合MONOSTICK の場合
親基板へ用意した7Pインターフェイスに TWELITE R シリーズを装着し、USBケーブルを使ってパソコンと接続してください。MONOSTICK をパソコンの USB ポートに接続してください。 TWELITE R シリーズ は必要ありません。
TWELITE (SMD) と PC の接続

TWELITE (SMD) と PC の接続

MONOSTICK と PC の接続

MONOSTICK と PC の接続

TWELITE DIP (BLUE/RED) の場合その他の場合
TWELITE R シリーズ へ装着し、USBケーブルを使ってパソコンと接続してください。7Pインターフェイスを備える TWELITE シリーズには TWELITE R シリーズ を装着し、USBケーブルを使ってパソコンと接続してください。
TWELITE DIP (BLUE/RED) と PC の接続

TWELITE DIP (BLUE/RED) と PC の接続

その他の TWELITE シリーズ と PC の接続

その他の TWELITE シリーズ と PC の接続

インタラクティブモードの切り替え

TWELITE STAGE を使用する場合

TWELITE STAGE APP は TWELITE のファームウェアの書き込みと設定、および受信したデータの表示機能を統合した開発ツールです。

  1. TWELITE STAGE APP を起動する
TWELITE STAGE APP のメインメニュー

TWELITE STAGE APP のメインメニュー

  1. TWELITE STAGE APP のメニューから「インタラクティブモード」を選択する

ターミナルソフトを使用する場合

一般のターミナルソフトを使用することもできます。

  1. パソコン側でターミナルソフトを起動する(通信条件:115200bps/8-N-1)
  2. TWELITEをリセットする。
  3. パソコンのキーボードの+をゆっくり(0.2~1秒間隔)で3回押下する。上手くいかない場合は、繰り返し + を入力する。

インタラクティブモードを終了するには、もう一度+を3回押下してください。

インタラクティブモードの操作

インタラクティブモードでは、以下のような画面を表示します。

--- CONFIG/TWELITE APP V1-00-2/SID=0x81000038/LID=0x78 ---
 a: set Application ID (0x67720102)
 i: set Device ID (--)
 c: set Channels (18)
 t: set mode4 sleep dur (1000ms)
 y: set mode7 sleep dur (10s)
 f: set mode3 fps (32)
---
 S: save Configuration
 R: reset to Defaults

表示内容は、ファームウェアの種類やバージョンによって異なります。

手順

  1. 値を選択:先頭のアルファベットを押下
  2. 値を指定:値を入力
  3. 値を確定:Enterキーを押下
  4. 値を保存:S(大文字)を押下
  5. 値を適用:TWELITE を再起動

()内の値は設定値です。

R(大文字)を押下することで、初期値へリセットできます(Sで適用)。

操作例

アプリケーションIDを 0xBEEFCAFE へ設定する場合の入力は次のようになります。

Input Application ID (HEX:32bit): BEEFCAFE

TWELITE APPS に共通する設定

周波数チャネル、アプリケーションID、デバイスID、再送回数と送信出力の設定は、TWELITE APPS に共通しています。

アプリケーションIDと周波数チャネル

グループ化のイメージ

グループ化のイメージ

同一のアプリケーションIDと周波数チャネルをもつ端末でないと通信できません。

a:アプリケーションID

通信を行うすべての端末へ同一の値を設定すると、論理的にネットワークを分離できます。

TWELITE は、自身と異なるアプリケーションIDをもつ端末から受信したパケットを破棄します。したがって、同一の周波数チャネル内へ複数のグループを設けることができます。

c:周波数チャネル

通信を行うすべての端末へ同一の値を設定すると、物理的にネットワークを分離できます。

TWELITE は IEEE802.15.4 規格へ準拠しており、2.4GHz帯を16チャネルに分割して使用します。

周波数チャネルの一覧

周波数チャネルの一覧

周波数チャネルを変更する場合は、c(小文字)を押下してください。

各 TWELITE APPS の初期値

TWELITE APPSアプリケーションID周波数チャネル
超簡単!標準アプリ(App_Twelite)0x6772010218
リモコンアプリ(App_IO)0x6772010716
シリアル通信アプリ(App_Uart)0x6772010318
無線タグアプリ(App_Tag)0x6772630515
パルアプリ(App_PAL)0x6772630515
キューアプリ(App_CUE)0x6772010218
アリアアプリ(App_ARIA)0x6772010218
親機・中継機アプリ(App_Wings)0x6772010218

i:論理デバイスID

論理デバイス ID は各端末を識別するために使用します。各端末に論理的なIDを割り振ることができます。

論理デバイスIDを付与するイメージ

論理デバイスIDを付与するイメージ

1つの親機に対して複数の子機を使用する場合は、各子機へ異なる ID(1~100)を付与してください。

x:送信出力と再送回数

送信出力を弱めることで電波の有効伝達範囲を狭くすることができます。ただし消費電力は変わりませんから、通常は最大出力でお使いください。

再送回数は、1回の送信リクエストにつき追加で送信する回数を指します。通信環境が悪い場合は、再送回数を設定するとデータの到達率が向上する場合があります。ただし、通信時間と消費電力は再送に応じて増加します。

インタラクティブモードでは2桁の数値を入力します。

  • 十の位:再送回数
    • 19
    • 0は各アプリのデフォルト値
    • Fで無効化
  • 一の位:送信出力
    • 3が最強
    • 2/1/0と1段階小さくなるたびに -11.5dB の出力低下

  • 32 → 再送3回、出力1段階弱める
  • 93 → 再送9回、出力最大

設定の初期化

設定内容によっては、操作へ支障をきたす場合があります(ボーレート変更など)。

次の手順で初期化できます。

  1. 他のアプリへ書き換え
  2. インタラクティブモードへ切り替え
    • Rでリセット
    • Sで保存
  3. 元のアプリへ書き戻す

各 TWELITE APPS に固有の設定

各アプリによって異なる設定については、以下のページをご覧ください。

1.3.1 - 超簡単!標準アプリ マニュアル

デジタル・アナログ信号伝送
親機と子機の入出力状態がシンクロ(同期)します。デジタル4ポート、アナログ4ポート、シリアル、I2Cを使用出来るオールインパッケージです。多彩な機能を単純化してわかりやすい反面、処理速度や応答性、省電力性は追求していません。

1.3.1.1 - 超簡単!標準アプリ マニュアル

最新版

ダウンロード

超簡単!標準アプリ(App_Twelite)を導入するには TWELITE STAGE SDK をインストールして、TWELITE STAGE アプリを使って書き換えてください。

1.3.1.1.1 - 超簡単!標準アプリのピン配置

超簡単!標準アプリが使用するピンの機能
超簡単!標準アプリ(App_Twelite)が使用するピンの機能とその配置

ピン配置

ピン配置表

ピン配置表

ピン名機能
VCC GND電源入力
DIx AIxデジタル・アナログ入力
DOx PWMxデジタル・アナログ出力
TX RXUART
SCL SDAI2C
Mx BPS設定入力
RSTリセット入力

電源入力

VCC/GND には、3.3V(2.3-3.6V)の電源を接続します。

デジタル・アナログ入出力

DIx/DOx, AIx/PWMx ピンは、対応する番号のピンが同期して信号伝送を行います。

デジタルアナログ
DIxの入力→DOxの出力AIxの入力→PWMxの出力

シリアル通信

UART

TX/RX は、UART 通信の送信と受信に使用します。具体的には、次のような場面で使用します。

I2C

SCL/SDAピンは、I2C のターゲットデバイスを接続する際に使用します。

設定入力

Mxピンを未接続またはGNDへ接続することで、親機、子機、中継機といった動作モードを切り替えることができます。

BPSピンを未接続またはGNDへ接続することで、UART のボーレート(通信速度)を 115200bps 以外の値へ変更できます。

リセット入力

リセット入力ピン RSTGNDとの間にプッシュボタンを接続することで、リセットボタンを実装できます。RST は内部プルアップされています。

1.3.1.1.2 - 超簡単!標準アプリの動作モード

各動作モードの説明
超簡単!標準アプリ(App_Twelite)には、7つの動作モードがあります。

動作モードの一覧

各モードは、Mx ピンを未接続または GND へ接続することで設定します。

M3M2M1モード機能省電力動作LID初期値
OOO子機:連続入力状態を親機へ送信するほか、常に受信データを待機して出力へ反映します120
OOG親機:連続入力状態を子機へ送信するほか、常に受信データを待機して出力へ反映します0
OGO中継機:連続常に受信データを待機して中継します122
OGG子機:連続0.03秒頻繁に入力状態を親機へ送信するほか、常に受信データを待機して出力へ反映します123
GOO子機:間欠1秒1秒おきに入力状態を親機へ送信するほか、受信を無効化して常に節電モードへ入ります124
GOG子機:間欠受信1秒1秒おきに入力状態を親機へ送信するほか、同時に受信を行い常に節電モードへ入ります125
GGO-未使用--
GGG子機:間欠10秒10秒おきに入力状態を親機へ送信するほか、受信を無効化して常に節電モードへ入ります127

O:未接続(OPEN)、G:GNDへ接続

初期状態は子機:連続モードです。

モードによって端末を識別するための論理デバイスID(LID)の初期値は異なります。

親機

連続モード

親機:連続モード

信号入力の変化を検知したとき、また1秒おきに、すべての子機へデータを送信します。

また子機から送信されるデータを常時待機しており、反応がよいものの、常に電力を消費します。

  • 受信:常に待機
  • 送信:入力変化時/1秒おき

子機

連続モード

子機:連続モード

信号入力の変化を検知したとき、また1秒おきに、すべての親機へデータを送信します。

また親機から送信されるデータを常時待機しており、反応がよいものの、常に電力を消費します。

親機との通信のイメージ

親機との通信のイメージ

  • 受信:常に待機
  • 送信:入力変化時/1秒おき

子機:連続0.03秒モード

子機:連続モードの定期送信の間隔は1秒ですが、これを0.03秒に短縮するモードです。

親機から送信されるデータを常時待機しているものの、子機から親機への通信で帯域を占有してしまうため、親機の入力に対する反応は鈍くなってしまいます。常に電力を消費します。

親機との通信のイメージ

親機との通信のイメージ

  • 受信:常に待機
  • 送信:入力変化時/0.03秒おき

間欠モード

子機:間欠1秒モード

信号入力の変化を検知したとき、また1秒おきに節電モードを解除し、すべての親機へデータを送信します。

受信機能を無効とするため、親機の制御を受けることはできません。省電力性能に優れたモードです。

親機との通信のイメージ

親機との通信のイメージ

  • 受信:無効
  • 送信:入力変化時/1秒おき

子機:間欠10秒モード

信号入力の変化を検知したとき、また10秒おきに節電モードを解除し、すべての親機へデータを送信します。

受信機能を無効とするため、親機の制御を受けることはできません。省電力性能に優れたモードです。

親機との通信のイメージ

親機との通信のイメージ

  • 受信:無効
  • 送信:入力変化時/10秒おき

子機:間欠受信1秒モード

信号入力の変化を検知したとき、また1秒おきに節電モードを解除し、すべての親機へデータを送信します。

1秒おきに受信処理も合わせて行います。省電力性能に優れていますが、子機:間欠1秒モードには劣ります。

親機との通信のイメージ

親機との通信のイメージ

  • 受信:1秒おき
  • 送信:入力変化時/1秒おき

中継機

連続モード

中継機:連続モード

中継機は、受信したパケットを送信します。

親機と子機の間に3つまで設置できますが、中継機を増やすとパケットの数が増大するため、干渉しやすくなることに注意してください。

中継のイメージ

中継のイメージ

  • 受信:常に待機
  • 送信:受信時

1.3.1.1.3 - 超簡単!標準アプリの代替ボーレート設定

UART 通信に使用するボーレート設定の変更
超簡単!標準アプリ(App_Twelite)はデフォルトで 115200 bps のボーレートを UART 通信に使用しますが、これを変更できます。

代替ボーレート設定の有効化

BPS ピンを GND へ接続することで、代替ボーレート設定を有効化できます。

BPS内容ボーレート備考
Oデフォルト115200bps
G上書き設定38400bps変更

O:未接続(OPEN)、G:GNDへ接続

1.3.1.1.4 - 超簡単!標準アプリのUART機能

UART機能で利用するデータ形式
超簡単!標準アプリ(App_Twelite)の UART 機能で使用するデータ形式を解説します。

デジタル・アナログ入出力

0x81:相手端末からの状態通知

受信した入力信号の状態を出力します。

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信元の論理デバイスID
1uint8コマンド番号0x81のみ
2uint8パケット識別子アプリケーションIDより生成
3uint8プロトコルバージョン0x01のみ
4uint8LQI0-255
5uint32送信元のシリアルID0x8???????
9uint8送信先の論理デバイスID
10uint16タイムスタンプ1秒で64カウント
12uint8中継回数
13uint16電源電圧単位はmV
15int8-(未使用)
16uint8デジタル信号LSBから順にDIxへ対応、0がHigh
MSBが1なら定期送信
17uint8デジタル信号マスクLSBから順にDIxへ対応、1が有効
18uint8AI1の変換値アナログ信号の計算を参照、0xFFで未使用
19uint8AI2の変換値アナログ信号の計算を参照、0xFFで未使用
20uint8AI3の変換値アナログ信号の計算を参照、0xFFで未使用
21uint8AI4の変換値アナログ信号の計算を参照、0xFFで未使用
22uint8AIxの補正値LSBから2ビットずつ順にAIxへ対応
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

アナログ信号の計算

AIxの入力電圧 \(V\)は、受信した変換値\(e_{r}\)および補正値\(e_{fr}\)を使って次のように表すことができます。

$$\begin{align*} V &= e+e_f \\ \text{where} \\ e &= 16e_r \\ e_f &= 4e_{fr} \\ \end{align*}$$

単位は mV

出力データの例

:78811501C98201015A000391000C2E00810301FFFFFFFFFB

0x80:相手端末の出力変更

相手端末の出力信号を制御します。

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID親機0x00,子機0x01-0x64,全子機0x78
1uint8コマンド番号0x80のみ
2uint8書式バージョン0x01のみ
3uint8デジタル信号LSBからDOxに対応、0でHigh
4uint8デジタル信号マスクLSBからDOxに対応、1で有効
5uint16PWM1信号0-1024,0xFFFFで無効
7uint16PWM2信号0-1024,0xFFFFで無効
9uint16PWM3信号0-1024,0xFFFFで無効
11uint16PWM4信号0-1024,0xFFFFで無効
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

UART 入出力

0x01:任意のデータの送信

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID親機0x00,子機0x01-0x64,全子機0x78
1uint8コマンド番号0x01のみ
2[uint8]任意のデータ長さ\(N\)のバイト列(\(N\leqq80\)を推奨)
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

0x01:任意のデータの受信

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信元の論理デバイスID親機0x00,子機0x01-0x64,未設定子機0x78
1uint8コマンド番号0x01のみ
2[uint8]任意のデータ長さ\(N\)のバイト列
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

I2C 入出力

0x88:I2C 入力

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID親機0x00,子機0-0x7F,全子機0x78,自身0xDB
1uint8パケット識別子0x88のみ
2uint8応答番号応答メッセージへ出力する番号
3uint8コマンド番号書き込み0x1,読み出し0x2,読み書き0x4
4uint8I2Cアドレス7ビット
5uint8I2Cコマンド最初のコマンドバイト
6uint8データサイズ0はなし
7[uint8]データ長さ\(N\)のバイト列
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

0x89:I2C 出力

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信元の論理デバイスID親機0x00,子機0-0x7F,全子機0x78,自身0xDB
1uint8パケット識別子0x89のみ
2uint8応答番号応答メッセージへ出力する番号
3uint8コマンド番号書き込み0x1,読み出し0x2,読み書き0x4
4uint8結果失敗0、成功1
5uint8データサイズ0はなし
6[uint8]データ長さ\(N\)のバイト列
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

1.3.1.1.5 - インタラクティブモード(超簡単!標準アプリ)

インタラクティブモードによる詳細な設定変更
インタラクティブモードでアプリの詳細設定を行うことができます。

ここでは超簡単!標準アプリ(App_Twelite)に固有の機能を説明します。共通機能については、TWELITE APPS マニュアル のトップページを参照してください。

表示例

次のような画面を表示します。

--- CONFIG/TWELITE APP V1-01-1/SID=0x8201001f/LID=0x78 ---
 a: set Application ID (0x67720102)
 i: set Device ID (--)
 c: set Channels (18)
 x: set Tx Power (03)
 t: set mode4 sleep dur (1000ms)
 y: set mode7 sleep dur (10s)
 f: set mode3 fps (32)
 z: set PWM HZ (1000,1000,1000,1000)
 o: set Option Bits (0x00000000)
 b: set UART baud (38400)
 p: set UART parity (N)
---
 S: save Configuration
 R: reset to Defaults

コマンド

設定項目初期値備考
aアプリケーションID0x6772010232bit
i論理デバイスID自動子機1-100,親機121,中継機122
c周波数チャネル1811-26
x再送回数と送信出力03
再送回数01-9回、0は初期値の2回、Fは無効
送信出力30-3
t子機間欠1秒モードの間隔1000100-10000ms
y子機間欠10秒モードの間隔102-10000s
f子機連続0.03秒モードのサイクル324/8/16/32回毎秒
zPWMxの周波数10001-64000Hz、カンマ区切りで個別設定
oオプションビット0x00000000その他の詳細設定
bUART代替ボーレート38400BPSピンで有効化
pUARTパリティN8-(N/O/E)-1

各コマンドの詳細を次に示します。

a:アプリケーションID

通信を行う端末はすべて同一の値とします。論理的にネットワークを分離します。

i:論理デバイスID

複数の子機を識別する必要がある場合に設定します。

子機の場合は1-100の任意の値へ、親機の場合は121へ、中継機の場合は122へ設定してください。

c:周波数チャネル

通信を行う端末はすべて同一の値とします。物理的にネットワークを分離します。

x:送信出力と再送回数

電波の送信出力と、パケットを追加で送信する回数を指定します。

t:子機間欠1秒モードの間隔

子機間欠1秒モードの間欠時間を1秒から他の値へ上書きします。単位はミリ秒です。

0を設定した場合は、タイマによる定期的な起床を無効化します。このときDIxの立ち下がりエッジにより起床しますが、立ち上がりエッジでは起床しません。

y:子機間欠10秒モードの間隔

子機間欠10秒モードの間欠時間を10秒から他の値へ上書きします。単位は秒です。

0を設定した場合は、タイマによる定期的な起床を無効化します。このときDIxの立ち下がりエッジにより起床しますが、立ち上がりエッジでは起床しません。

f:子機連続0.03秒モードのサイクル

毎秒の送信リクエストの数を32回から4/8/16回へ上書きします。再送回数は含みません。

zPWMxの周波数

値を一つ指定した場合は、すべてのPWMポートの周波数を上書きします。カンマ区切りで指定した場合は、PWM1-PWM4に個別の値を上書きできます。

o:オプションビット

32bit の数値を指定します。各ビットに紐付いた設定を有効化できます。

対象ビット設定項目初期送信受信連続間欠
0x00000001低レイテンシモード0️⃣
0x00000002定期送信の無効化0️⃣
0x00000004定期送信とUART出力の無効化0️⃣
0x00000010AIxの変化による送信の無効化0️⃣
0x00000020AIxの値の無効化0️⃣
0x00000040PWMxの計算式を変更0️⃣
0x00000100ボタン押下時のみ送信0️⃣
0x00000800DIxの内部プルアップを停止0️⃣
0x00008000子機へ中継機能を付与0️⃣
0x00001000子機中継時の最大中継段数を2とする0️⃣
0x00002000子機中継時の最大中継段数を3とする0️⃣
0x00010000PWMxの波形を反転0️⃣
0x00020000起動後PWMxを落とす0️⃣
0x00080000代替ポート割り当て0️⃣
0x00100000起動後2秒間DOxを落とす0️⃣
0x00400000DOxの出力を反転0️⃣
0x00800000DOxの内部プルアップを停止0️⃣

b:UART代替ボーレート

BPSピンをGNDへ接続して起動した場合に選択される代替ボーレートを38400bpsから上書きします。

値は9600/19200/38400/57600/115200/230400から選択できます。他の値を指定すると、誤差が生じる可能性があります。

p:UARTパリティ

Nはパリティ無し、Oは奇数、E:は偶数を示します。

データビットは8、ストップビットは1で固定されます。ハードウェアフローは設定できません。

オプションビットの詳細

オプションビットの値の各ビットに紐付いた設定を解説します。

00000001:低レイテンシモード

低レイテンシモードは、DIxの変化を検知してから速やかに送信を行うことで、受信側の遅延を短縮します。

00000002:定期送信の無効化

連続モードにおける1秒おきの定期送信を無効化します。

00000004:定期送信とUART出力の無効化

子機:連続モードにおける1秒おきの定期送信を無効化するほか、受信データのUART出力を停止します。

00000010AIxの変化による送信の無効化

子機:連続モードにおいて、AIxの入力が変化した際の送信を無効化します。

開放されたAIxポートは不定の値を報告するため、正気状態でアナログ入力を利用しない場合はVCCへ接続する必要があります。このオプションを設定すると、VCCへの接続を省略できます。

00000020AIxの値の無効化

ADCの計測値を使用せず、未使用ポート(0xFFFF)扱いとしてパケットを送信します

00000040PWMxの計算式を変更

初期状態ではボリューム用に調節した出力を PWMx へ適用します。

このオプションはこれを無効化し、1.8V 以下の入力に対してフルスケールの出力を行います。

00000100:ボタン押下時のみ送信

DIxの入力が Low であるときにパケットを連続送信します。

例えば、モータを遠隔制御する際に利用します。リモコンのボタンを押している間にモータを回転させ、電波が途切れた場合に停止させることができます。

00000800DIxの内部プルアップを停止

DIxの内部プルアップ(約50kΩ)をすべて停止します。

00008000:子機へ中継機能を付与

子機:連続モードにおいて中継機能を付与します。最大中継段数は1です。

00001000:子機中継時の最大中継段数を2とする

00008000:子機へ中継機能を付与の設定時に、最大中継段数を2へ変更します。

00002000:子機中継時の最大中継段数を3とする

00008000:子機へ中継機能を付与の設定時に、最大中継段数を3へ変更します。

00010000PWMxの波形を反転

PWMxの出力波形を反転します。

AIxへ最大値を入力すると PWMxは Low となります。

00020000:起動後PWMxを落とす

起動後またはリセット後にPWMxの出力を Low 状態とします。

00080000:代替ポート割り当て

代替ポート割り当てを有効化します。

PWM2/PWM3へトランジスタ等を接続すると、動作が不安定となる場合があります(詳細)そうした場合に利用してください。

00100000:起動後2秒間DOxを落とす

起動後またはリセット後にDOxを2秒間 Low 状態とします。

DOx へ接続した LED を起動時に点灯させることができます。

00400000DOxの出力を反転

DOxの出力を反転します。

初期状態とは異なり、片方の DI が Low レベルになると、もう片方の DO も Low レベルとなります。

00800000DOxの内部プルアップを停止

DOxの内部プルアップ(約50kΩ)をすべて停止します。

1.3.2 - 親機・中継機アプリ マニュアル

データ集約と通信範囲拡張に。
超簡単!標準アプリやパルアプリなどの TWELITE APPS やact のパケットを受信と中継をするアプリです。

1.3.2.1 - 親機・中継機アプリ マニュアル

最新版
TWELITE APPS や act の子機に対する親機や中継機として働きます。

機能

TWELITE APPSとactの全てのデータパケットを処理することができ、共通の親機または中継機として使用できます。

  • 超簡単!標準アプリやパル専用アプリなどの TWELITE APPS や act のデータを1つの MONOSTICK で収集可能
  • 16チャンネルで複数システムを個別に運用可能
  • アプリケーションIDの設定することで、同一チャネルに複数システムを混在可能
  • 中継機能で通信範囲拡大

1.3.2.1.1 - 親機・中継機アプリの動作モード

親機・中継機アプリの動作モード

親機モードと中継機モードの2つのモードがあります。

1.3.2.1.1.1 - 親機・中継機アプリの親機モード

子機からデータを受信、子機へデータを送信する

子機から送信されたデータを受信し、シリアルポートから出力します。また、シリアルポートへ入力されたコマンドを子機へ送信します。

1.3.2.1.1.1.1 - 親機・中継機アプリの受信メッセージ

子機からデータを受信した際の出力

子機から送信されたデータを受信し、既定の書式でシリアルポートから出力します。

1.3.2.1.1.1.1.1 - 超簡単!標準アプリからの出力(親機・中継機アプリ)

超簡単!標準アプリからデータを受信した際の出力書式

0x81:相手端末からの状態通知

受信した入力信号の状態を出力します。

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信元の論理デバイスID
1uint8コマンド番号0x81のみ
2uint8パケット識別子アプリケーションIDより生成
3uint8プロトコルバージョン0x01のみ
4uint8LQI0-255
5uint32送信元のシリアルID0x8???????
9uint8送信先の論理デバイスID
10uint16タイムスタンプ1秒で64カウント
12uint8中継回数
13uint16電源電圧単位はmV
15int8-(未使用)
16uint8デジタル信号LSBから順にDIxへ対応、0がHigh
MSBが1なら定期送信
17uint8デジタル信号マスクLSBから順にDIxへ対応、1が有効
18uint8AI1の変換値アナログ信号の計算を参照、0xFFで未使用
19uint8AI2の変換値アナログ信号の計算を参照、0xFFで未使用
20uint8AI3の変換値アナログ信号の計算を参照、0xFFで未使用
21uint8AI4の変換値アナログ信号の計算を参照、0xFFで未使用
22uint8AIxの補正値LSBから2ビットずつ順にAIxへ対応
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

アナログ信号の計算

AIxの入力電圧 \(V\)は、受信した変換値\(e_{r}\)および補正値\(e_{fr}\)を使って次のように表すことができます。

$$\begin{align*} V &= e+e_f \\ \text{where} \\ e &= 16e_r \\ e_f &= 4e_{fr} \\ \end{align*}$$

単位は mV

出力データの例

:78811501C98201015A000391000C2E00810301FFFFFFFFFB
#データ内容
:charヘッダ:
780uint8送信元の論理デバイスID0x78
811uint8コマンド番号0x81
152uint8パケット識別子0x15
013uint8プロトコルバージョン0x01
C94uint8LQI201/255
8201015A5uint32送信元のシリアルID0x201015A
009uint8送信先の論理デバイスID0x00
039110uint16タイムスタンプ14.27
0012uint8中継回数0
0C2E13uint16電源電圧3118mV
0015int8-
8116uint8デジタル信号DI1 L DI2 H
DI3 H DI4 H
(定期送信)
0317uint8デジタル信号マスクDI1 DI2
0118uint8AI1の変換値16mV
FF19uint8AI2の変換値未使用
FF20uint8AI3の変換値未使用
FF21uint8AI4の変換値未使用
FF22uint8AIxの補正値AI1 0x03
FBuint8チェックサム0xFB
charフッタ\r
charフッタ\n

データの判別条件

親機・中継機アプリは、さまざまな種類の子機からデータを受信することができます。

出力されたデータが超簡単!標準アプリのものであるかを確認するには、次の箇所を参照してください。

#データ項目条件
1uint8コマンド番号0x81であること
3uint8プロトコルバージョン0x01であること
5uint32送信元のシリアルIDMSBが1であること(0x8???????
--ペイロードのサイズ23バイトであること(:とチェックサムの間)

パーサの実装例

0x01:任意のデータの受信

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信元の論理デバイスID親機0x00,子機0x01-0x64,未設定子機0x78
1uint8コマンド番号0x01のみ
2[uint8]任意のデータ長さ\(N\)のバイト列
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

1.3.2.1.1.1.1.2 - リモコンアプリからの出力(親機・中継機アプリ)

リモコンアプリからデータを受信した際の出力書式

0x81:相手端末からの状態通知

受信した入力信号の状態を出力します。

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信元の論理デバイスID
1uint8コマンド番号0x81のみ
2uint8パケット識別子0x0Fのみ
3uint8プロトコルバージョン0x01のみ
4uint8LQI0-255
5uint32送信元のシリアルID0x8???????
9uint8送信先の論理デバイスID
10uint16タイムスタンプ1秒で64カウント、MSBは内部フラグ
12uint8中継回数
13uint16デジタル信号LSBから順にIxへ対応、0がHigh
15uint16デジタル信号マスクLSBから順にIxへ対応、1なら有効
17uint16デジタル信号フラグLSBから順にIxへ対応、1なら割り込み
19uint8未使用内部管理用
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

出力データの例

:01810F01DB8630000200645F000040004F00400049
#データ内容
:charヘッダ:
010uint8送信元の論理デバイスID0x78
811uint8コマンド番号0x81
0F2uint8パケット識別子0x15
013uint8プロトコルバージョン0x01
DB4uint8LQI219/255
863000025uint32送信元のシリアルID0x6300002
009uint8送信先の論理デバイスID0x00
645F10uint16タイムスタンプ401
0012uint8中継回数0
004013uint16デジタル信号I7がLo
004F15uint16デジタル信号マスクI7,I1-I4が有効
004017uint16デジタル信号フラグI7は割り込みにより変化
0019uint8未使用
49uint8チェックサム0x49
charフッタ\r
charフッタ\n

データの判別条件

親機・中継機アプリは、さまざまな種類の子機からデータを受信することができます。

出力されたデータがリモコンアプリのものであるかを確認するには、次の箇所を参照してください。

#データ項目条件
1uint8コマンド番号0x81であること
3uint8プロトコルバージョン0x02であること
5uint32送信元のシリアルIDMSBが1であること(0x8???????
--ペイロードのサイズ20バイトであること(:とチェックサムの間)

パーサの実装例

1.3.2.1.1.1.1.3 - シリアル通信アプリからの出力(親機・中継機アプリ)

シリアル通信アプリからデータを受信した際の出力書式

書式モード:簡易形式

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信元の論理デバイスID親機0x00,子機0x01-0x64,未設定子機0x78
1uint8コマンド番号送信側で指定した0x80未満の値
2[uint8]任意のデータ長さ\(N\)のバイト列
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

出力データの例

:780100112233AABBCCDD13
#データ内容
:charヘッダ:
780uint8送信元の論理デバイスIDID未設定子機
011uint8コマンド番号0x01
00112233AABBCCDD2[uint8]任意のデータそのまま
13uint8チェックサム0x13
charフッタ\r
charフッタ\n

データの判別条件

親機・中継機アプリは、さまざまな種類の子機からデータを受信することができます。

出力されたデータがシリアル通信アプリ(書式モード:簡易形式)のものであるかを確認するには、次の箇所を参照してください。

#データ項目条件
0uint8送信元の論理デバイスID0x64以下もしくは0x78であること
1uint8コマンド番号0x80未満であること
--ペイロードのサイズ3バイト以上82バイト以下であること

パーサの実装例

書式モード:拡張書式

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信元の論理デバイスID親機0x00,子機0x01-0x64,未設定子機0x78
1uint8コマンド番号0xA0のみ
2uint8応答ID送信側で指定した値
3uint32送信元の拡張アドレスシリアルIDの先頭へ0x8を加えた値
7uint32送信先の拡張アドレス論理デバイスID使用時は0xFFFFFFFF
11uint8LQI受信時の電波通信品質
12uint16続くバイト列の長さバイト数\(M\)を表す
14[uint8]任意のデータ長さ\(M\)のバイト列
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

出力データの例

:78A0028201015AFFFFFFFFA8000700112233AABBCCC6
#データ内容備考
:charヘッダ:
780uint8送信元の論理デバイスIDID未設定子機
A01uint8コマンド番号0xA0
022uint8応答ID0x02
8201015A3uint32送信元の拡張アドレス0x201015A
FFFFFFFF7uint32送信先の拡張アドレス論理デバイスID指定
A811uint8LQI168/255
000712uint16続くバイト列の長さ7バイト
00112233AABBCC14[uint8]任意のデータそのまま
C6uint8チェックサム0xC6
charフッタ
charフッタ

データの判別条件

親機・中継機アプリは、さまざまな種類の子機からデータを受信することができます。

出力されたデータがシリアル通信アプリ(書式モード:拡張形式)のものであるかを確認するには、次の箇所を参照してください。

#データ項目条件
0uint8送信元の論理デバイスID0x64以下もしくは0x78であること
1uint8コマンド番号0xA0であること
2uint8応答ID0x80未満であること
3uint32送信元の拡張アドレスMSBが1であること(0x8???????
12uint16続くバイト列の長さペイロードのサイズ - 14バイトであること

パーサの実装例

1.3.2.1.1.1.1.4 - パル/キュー/アリアアプリからの出力(親機・中継機アプリ)

パル/キュー/アリアアプリからデータを受信した際の出力書式

1.3.2.1.1.1.1.4.1 - パルアプリからの出力(親機・中継機アプリ)

パルアプリからデータを受信した際の出力書式

全般

パルアプリから受信したデータは、センサ種別とその値からなるセンサーデータの羅列によって表現します。

以降では、製品の種別に応じた具体的な例を取り上げます。

開閉センサーパル

データ形式

#データ内容備考
charヘッダ:のみ
0uint32中継機のシリアルID中継なしの場合80000000
4uint8LQI0-255
5uint16続き番号
7uint32送信元のシリアルID0x8???????
11uint8送信元の論理デバイスID
12uint8センサー種別0x80のみ
13uint8PAL基板バージョンとPAL基板ID0x81のみ
14uint8センサーデータの数3のみ
センサーデータ1
15uint8情報ビット0x11のみ
16uint8データソース0x30のみ
17uint8拡張バイト0x08のみ
18uint8データ長2のみ
19uint16データ電源電圧(mV)
センサーデータ2
21uint8情報ビット0x11のみ
22uint8データソース0x30のみ
23uint8拡張バイト0x01のみ
24uint8データ長2のみ
25uint16データADC1の電圧(mV)
センサーデータ3
27uint8情報ビット0x00のみ
28uint8データソース0x00のみ
29uint8拡張バイト0x00のみ
30uint8データ長1のみ
31uint8データ磁気データ
センサーデータの末端
32uint8チェックサム1直前までのCRC8
uint8チェックサム2チェックサム1までのLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

出力データの例

:80000000A8001C82012B1E01808103113008020D0C1130010203E40000000101EC6E
#データ内容
:charヘッダ:
800000000uint32中継機のシリアルID中継なし
A84uint8LQI168/255
001C5uint16続き番号28
82012B1E7uint32送信元のシリアルID0x2012B1E
0111uint8送信元の論理デバイスID0x01
8012uint8センサー種別
8113uint8PAL基板バージョンとPAL基板ID開閉パルV1
0314uint8センサーデータの数3
センサーデータ1
1115uint8情報ビット拡張バイトありuint16
3016uint8データソース電圧
0817uint8拡張バイト電源
0218uint8データ長2バイト
0D0C19uint16データ3340mV
センサーデータ2
1121uint8情報ビット拡張バイトありuint16
3022uint8データソース電圧
0123uint8拡張バイトADC1
0224uint8データ長2バイト
03E425uint16データ996mV
センサーデータ3
0027uint8情報ビット拡張バイトなしuint8
0028uint8データソース磁気
0029uint8拡張バイトなし
0130uint8データ長1バイト
0131uint8データN極が近づいた
センサーデータの末端
EC32uint8チェックサム10xEC
6Euint8チェックサム20x6E
charフッタ'\r'
charフッタ'\n'

データの判別条件

親機・中継機アプリは、さまざまな種類の子機からデータを受信することができます。

出力されたデータがパルアプリ(開閉センサーパル)のものであるかを確認するには、次の箇所を参照してください。

#データ項目条件
0uint32中継機のシリアルIDMSBが1であること
7uint32送信元のシリアルIDMSBが1であること
12uint8センサー種別0x80であること
13uint8PAL基板バージョンとPAL基板ID0x81であること
--ペイロードのサイズ33バイトであること

パーサの実装例

環境センサーパル

データ形式

#データ内容備考
charヘッダ:のみ
0uint32中継機のシリアルID中継なしの場合80000000
4uint8LQI0-255
5uint16続き番号
7uint32送信元のシリアルID0x8???????
11uint8送信元の論理デバイスID
12uint8センサー種別0x80のみ
13uint8PAL基板バージョンとPAL基板ID0x82のみ
14uint8センサーデータの数5のみ
センサーデータ1
15uint8情報ビット0x11のみ
16uint8データソース0x30のみ
17uint8拡張バイト0x08のみ
18uint8データ長2のみ
19uint16データ電源電圧(mV)
センサーデータ2
21uint8情報ビット0x11のみ
22uint8データソース0x30のみ
23uint8拡張バイト0x01のみ
24uint8データ長2のみ
25uint16データADC1の電圧(mV)
センサーデータ3
27uint8情報ビット0x05のみ
28uint8データソース0x01のみ
29uint8拡張バイト0x00のみ
30uint8データ長2のみ
31int16データ温度データ
センサーデータ4
33uint8情報ビット0x01のみ
34uint8データソース0x02のみ
35uint8拡張バイト0x00のみ
36uint8データ長2のみ
37uint16データ湿度データ
センサーデータ5
39uint8情報ビット0x02のみ
40uint8データソース0x03のみ
41uint8拡張バイト0x00のみ
42uint8データ長4のみ
43uint32データ照度データ
センサーデータの末端
47uint8チェックサム1直前までのCRC8
uint8チェックサム2チェックサム1までのLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

出力データの例

​:8000000084811F810EFF6D04808205113008020AEB11300102035A0501000209E3010200020E3A02030004000001BE6C00
#データ内容
:charヘッダ:
800000000uint32中継機のシリアルID中継なし
844uint8LQI132/255
811F5uint16続き番号33055
810EFF6D7uint32送信元のシリアルID0x10EFF6D
0411uint8送信元の論理デバイスID0x04
8012uint8センサー種別
8213uint8PAL基板バージョンとPAL基板ID環境パルV1
0514uint8センサーデータの数5
センサーデータ1
1115uint8情報ビット拡張バイトありuint16
3016uint8データソース電圧
0817uint8拡張バイト電源
0218uint8データ長2バイト
0AEB19uint16データ2795mV
センサーデータ2
1121uint8情報ビット拡張バイトありuint16
3022uint8データソース電圧
0123uint8拡張バイトADC1
0224uint8データ長2バイト
035A25uint16データ858mV
センサーデータ3
0527uint8情報ビット拡張バイトなしint16
0128uint8データソース温度
0029uint8拡張バイトなし
0230uint8データ長2バイト
09E331int16データ25.31°C
センサーデータ4
0133uint8情報ビット拡張バイトなしuint16
0234uint8データソース湿度
0035uint8拡張バイトなし
0236uint8データ長2バイト
0E3A37uint16データ36.42%
センサーデータ5
0239uint8情報ビット拡張バイトなしuint32
0340uint8データソース照度
0041uint8拡張バイトなし
0442uint8データ長4バイト
000001BE43uint32データ446lx
センサーデータの末端
6C47uint8チェックサム10x6C
00uint8チェックサム20x00
charフッタ'\r'
charフッタ'\n'

データの判別条件

親機・中継機アプリは、さまざまな種類の子機からデータを受信することができます。

出力されたデータがパルアプリ(環境センサーパル)のものであるかを確認するには、次の箇所を参照してください。

#データ項目条件
0uint32中継機のシリアルIDMSBが1であること
7uint32送信元のシリアルIDMSBが1であること
12uint8センサー種別0x80であること
13uint8PAL基板バージョンとPAL基板ID0x82であること
--ペイロードのサイズ48バイトであること

パーサの実装例

動作センサーパル

データ形式

#データ内容備考
charヘッダ:のみ
0uint32中継機のシリアルID中継なしの場合80000000
4uint8LQI0-255
5uint16続き番号
7uint32送信元のシリアルID0x8???????
11uint8送信元の論理デバイスID
12uint8センサー種別0x80のみ
13uint8PAL基板バージョンとPAL基板ID0x83のみ
14uint8センサーデータの数18のみ
センサーデータ1
15uint8情報ビット0x11のみ
16uint8データソース0x30のみ
17uint8拡張バイト0x08のみ
18uint8データ長2のみ
19uint16データ電源電圧(mV)
センサーデータ2
21uint8情報ビット0x11のみ
22uint8データソース0x30のみ
23uint8拡張バイト0x01のみ
24uint8データ長2のみ
25uint16データADC1の電圧(mV)
センサーデータ3
27uint8情報ビット0x15のみ
28uint8データソース0x04のみ
29uint8拡張バイト0x?0 周波数とサンプル番号
30uint8データ長6のみ
31int16データ加速度データ
センサーデータ4
37uint8情報ビット0x15のみ
38uint8データソース0x04のみ
39uint8拡張バイト0x?1 周波数とサンプル番号
40uint8データ長6のみ
41int16データ加速度データ
センサーデータ5
<省略>
センサデータ18
177uint8情報ビット0x15のみ
178uint8データソース0x04のみ
179uint8拡張バイト0x?F 周波数とサンプル番号
180uint8データ長6のみ
181int16データ加速度データ
センサーデータの末端
187uint8チェックサム1直前までのCRC8
uint8チェックサム2チェックサム1までのLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

出力データの例

​:80000000BA002382011CEF01808312113008020D0211300102055C1504400600100010045015044106000800100430150442060000001004381504430600080018043015044406000000180458150445060000002004381504460600080018042815044706FFE80010042015044806FFF00010043815044906FFE80018043015044A06FFF80018044015044B06FFF80018041815044C0600000010042015044D0600000028045015044E0600000008043815044F0600000018043828A5
#データ内容
:charヘッダ:
800000000uint32中継機のシリアルID中継なし
BA4uint8LQI186/255
00235uint16続き番号35
82011CEF7uint32送信元のシリアルID0x2011CEF
0111uint8送信元の論理デバイスID0x01
8012uint8センサー種別
8313uint8PAL基板バージョンとPAL基板ID動作パルV1
1214uint8センサーデータの数18
センサーデータ1
1115uint8情報ビット拡張バイトありuint16
3016uint8データソース電圧
0817uint8拡張バイト電源
0218uint8データ長2バイト
0D0219uint16データ3330mV
センサーデータ2
1121uint8情報ビット拡張バイトありuint16
3022uint8データソース電圧
0123uint8拡張バイトADC1
0224uint8データ長2バイト
055C25uint16データ1372mV
センサーデータ3
1527uint8情報ビット拡張バイトありint16
0428uint8データソース加速度
4029uint8拡張バイト100Hz, 0番サンプル
0630uint8データ長6バイト
00100010045031int16データX16mG/Y16mG/Z1104mG
センサーデータ4
1537uint8情報ビット拡張バイトありint16
0438uint8データソース加速度
4139uint8拡張バイト100Hz, 1番サンプル
0640uint8データ長6バイト
00080010043041uint16データX8mG/Y16mG/Z1072mG
センサーデータ5
<省略>
センサデータ15
15177uint8情報ビット拡張バイトありint16
04178uint8データソース加速度
4F179uint8拡張バイト100Hz, 15番サンプル
06180uint8データ長6バイト
000000180438181uint32データX0mG/Y24mG/Z1080mG
センサーデータの末端
28187uint8チェックサム10x28
A5uint8チェックサム20xA5
charフッタ'\r'
charフッタ'\n'

データの判別条件

親機・中継機アプリは、さまざまな種類の子機からデータを受信することができます。

出力されたデータがパルアプリ(動作センサーパル)のものであるかを確認するには、次の箇所を参照してください。

#データ項目条件
0uint32中継機のシリアルIDMSBが1であること
7uint32送信元のシリアルIDMSBが1であること
12uint8センサー種別0x80であること
13uint8PAL基板バージョンとPAL基板ID0x83であること
--ペイロードのサイズ188バイトであること

パーサの実装例

通知パル

データ形式

#データ内容備考
charヘッダ:のみ
0uint32中継機のシリアルID中継なしの場合80000000
4uint8LQI0-255
5uint16続き番号
7uint32送信元のシリアルID0x8???????
11uint8送信元の論理デバイスID
12uint8センサー種別0x80のみ
13uint8PAL基板バージョンとPAL基板ID0x84のみ
14uint8センサーデータの数3のみ
センサーデータ1
15uint8情報ビット0x11のみ
16uint8データソース0x30のみ
17uint8拡張バイト0x08のみ
18uint8データ長2のみ
19uint16データ電源電圧(mV)
センサーデータ2
21uint8情報ビット0x11のみ
22uint8データソース0x30のみ
23uint8拡張バイト0x01のみ
24uint8データ長2のみ
25uint16データADC1の電圧(mV)
センサーデータ3
27uint8情報ビット0x12のみ
28uint8データソース0x05のみ
29uint8拡張バイト0x04のみ
30uint8データ長4のみ
31uint8データ加速度イベントデータ
32[uint8]未使用
センサーデータの末端
35uint8チェックサム1直前までのCRC8
uint8チェックサム2チェックサム1までのLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

出力データの例

:80000000C9BBC082014C3501808403 113008020D0C 1130010203F9 1205040410000000 97C6
#データ内容
:charヘッダ:
800000000uint32中継機のシリアルID中継なし
C94uint8LQI201/255
BBC05uint16続き番号48064
82014C357uint32送信元のシリアルID0x2014C35
0111uint8送信元の論理デバイスID0x01
8012uint8センサー種別
8413uint8PAL基板バージョンとPAL基板ID通知パルV1
0314uint8センサーデータの数3
センサーデータ1
1115uint8情報ビット拡張バイトありuint16
3016uint8データソース電圧
0817uint8拡張バイト電源
0218uint8データ長2バイト
0D0C19uint16データ3340mV
センサーデータ2
1121uint8情報ビット拡張バイトありuint16
3022uint8データソース電圧
0123uint8拡張バイトADC1
0224uint8データ長2バイト
03F925uint16データ1017mV
センサーデータ3
1227uint8情報ビット拡張バイトありuint32
0528uint8データソースイベント
0429uint8拡張バイト加速度イベント
0430uint8データ長4バイト
1031uint8データムーブ
00000032[uint8]
センサーデータの末端
9735uint8チェックサム10x97
C6uint8チェックサム20xC6
charフッタ'\r'
charフッタ'\n'

データの判別条件

親機・中継機アプリは、さまざまな種類の子機からデータを受信することができます。

出力されたデータがパルアプリ(通知パル)のものであるかを確認するには、次の箇所を参照してください。

#データ項目条件
0uint32中継機のシリアルIDMSBが1であること
7uint32送信元のシリアルIDMSBが1であること
12uint8センサー種別0x80であること
13uint8PAL基板バージョンとPAL基板ID0x84であること
--ペイロードのサイズ36バイトであること

1.3.2.1.1.1.1.4.2 - キューアプリからの出力(親機・中継機アプリ)

キューアプリからデータを受信した際の出力書式

TWELITE CUE モード

データ形式

#データ内容備考
charヘッダ:のみ
0uint32中継機のシリアルID中継なしの場合80000000
4uint8LQI0-255
5uint16続き番号
7uint32送信元のシリアルID0x8???????
11uint8送信元の論理デバイスID
12uint8センサー種別0x80のみ
13uint8PAL基板バージョンとPAL基板ID0x05のみ
14uint8センサーデータの数15のみ
センサーデータ1
15uint8情報ビット0x00のみ
16uint8データソース0x34のみ
17uint8拡張バイト0x00のみ
18uint8データ長3のみ
19[uint8]データパケットプロパティデータ
センサーデータ2
22uint8情報ビット0x12のみ
23uint8データソース0x05のみ
24uint8拡張バイト0x35または0x04または0x00
25uint8データ長4のみ
26uint32データイベントデータ
センサーデータ3
30uint8情報ビット0x11のみ
31uint8データソース0x30のみ
32uint8拡張バイト0x08のみ
33uint8データ長2のみ
34uint16データ電源電圧(mV)
センサーデータ4
36uint8情報ビット0x11のみ
37uint8データソース0x30のみ
38uint8拡張バイト0x01のみ
39uint8データ長2のみ
40uint16データADC1の電圧(mV)
センサーデータ5
42uint8情報ビット0x00のみ
43uint8データソース0x00のみ
44uint8拡張バイト0x00のみ
45uint8データ長1のみ
46uint8データ磁気データ
センサーデータ6
47uint8情報ビット0x15のみ
48uint8データソース0x04のみ
49uint8拡張バイト0x?0 周波数とサンプル番号
50uint8データ長6のみ
51[int16]データ加速度データ
センサーデータ7
57uint8情報ビット0x15のみ
58uint8データソース0x04のみ
59uint8拡張バイト0x?1 周波数とサンプル番号
60uint8データ長6のみ
61[int16]データ加速度データ
センサーデータ8
<省略>
センサーデータ15
137uint8情報ビット0x15のみ
138uint8データソース0x04のみ
139uint8拡張バイト0x?9 周波数とサンプル番号
140uint8データ長6のみ
141int16データ加速度データ
センサーデータの末端
147uint8チェックサム1直前までのCRC8
uint8チェックサム2チェックサム1までのLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

出力データの例

:80000000CF7F7382019E3B0180050F003400038135001205040406000000113008020B8611300102042E000000018015044006FFF00010FC1815044106FFF00018FC1815044206FFF00010FC0015044306FFF80000FC1015044406FFF00010FC1815044506FFE00018FBF815044606FFE80000FC0015044706FFE80010FBF815044806FFE80010FC0815044906FFE80010FC080C0E
#データ内容
:charヘッダ:
800000000uint32中継機のシリアルID中継なし
CF4uint8LQI207/255
7F735uint16続き番号32627
82019E3B7uint32送信元のシリアルID0x2019E3B
0111uint8送信元の論理デバイスID0x01
8012uint8センサー種別
0513uint8PAL基板バージョンとPAL基板IDTWELITE CUE
0F14uint8センサーデータの数15
センサーデータ1
0015uint8情報ビット拡張バイトなしuint8
3416uint8データソースパケットプロパティ
0017uint8拡張バイトなし
0318uint8データ長3バイト
81350019[uint8]データID129、タイマイベント発生
センサーデータ2
1222uint8情報ビット拡張バイトありuint32
0523uint8データソースイベント
0424uint8拡張バイト加速度イベント
0425uint8データ長4バイト
0600000026uint32データサイコロ:6
センサーデータ3
1130uint8情報ビット拡張バイトありuint16
3031uint8データソース電圧
0832uint8拡張バイト電源電圧
0233uint8データ長2バイト
0B8634uint16データ2950mV
センサーデータ4
1136uint8情報ビット拡張バイトありuint16
3037uint8データソース電圧
0138uint8拡張バイトADC1の電圧
0239uint8データ長2バイト
042E40uint16データ1070mV
センサーデータ5
0042uint8情報ビット拡張バイトなしuint8
0043uint8データソース磁気
0044uint8拡張バイトなし
0145uint8データ長1バイト
8046uint8データ磁石なし(定期送信)
センサーデータ6
1547uint8情報ビット拡張バイトありint16
0448uint8データソース加速度データ
4049uint8拡張バイト100Hz, 0番サンプル
0650uint8データ長6バイト
FFF00010FC1851[int16]データX-16mG/Y16mG/Z-1000mG
センサーデータ7
1557uint8情報ビット拡張バイトありint16
0458uint8データソース加速度データ
4159uint8拡張バイト100Hz, 1番サンプル
0660uint8データ長6バイト
FFF00018FC1861[int16]データX-16mG/Y24mG/Z-1000mG
センサーデータ8
<省略>
センサーデータ15
15137uint8情報ビット拡張バイトありint16
04138uint8データソース加速度データ
49139uint8拡張バイト100Hz, 9番サンプル
06140uint8データ長6バイト
FFE80010FC08141int16データX-24mG/Y16mG/Z-1016mG
センサーデータの末端
0C147uint8チェックサム10x0C
0Euint8チェックサム20x0E
charフッタ'\r'
charフッタ'\n'

データの判別条件

親機・中継機アプリは、さまざまな種類の子機からデータを受信することができます。

出力されたデータがキューアプリ(TWELITE CUEモード)のものであるかを確認するには、次の箇所を参照してください。

#データ項目条件
0uint32中継機のシリアルIDMSBが1であること
7uint32送信元のシリアルIDMSBが1であること
12uint8センサー種別0x80であること
13uint8PAL基板バージョンとPAL基板ID0x05であること
--ペイロードのサイズ148バイトであること

パーサの実装例

開閉センサーパルモード

動作センサーパルモード(加速度計測モード)

動作センサーパルモード(ムーブ/ダイスモード)

データ形式

#データ内容備考
charヘッダ:のみ
0uint32中継機のシリアルID中継なしの場合80000000
4uint8LQI0-255
5uint16続き番号
7uint32送信元のシリアルID0x8???????
11uint8送信元の論理デバイスID
12uint8センサー種別0x80のみ
13uint8PAL基板バージョンとPAL基板ID0x03のみ
14uint8センサーデータの数04のみ
センサーデータ1
15uint8情報ビット0x00のみ
16uint8データソース0x34のみ
17uint8拡張バイト0x00のみ
18uint8データ長3のみ
19[uint8]データパケットプロパティデータ
センサーデータ2
22uint8情報ビット0x12のみ
23uint8データソース0x05のみ
24uint8拡張バイト0x04のみ
25uint8データ長4のみ
26uint32データイベントデータ
センサーデータ3
30uint8情報ビット0x11のみ
31uint8データソース0x30のみ
32uint8拡張バイト0x08のみ
33uint8データ長2のみ
34uint16データ電源電圧(mV)
センサーデータ4
36uint8情報ビット0x11のみ
37uint8データソース0x30のみ
38uint8拡張バイト0x01のみ
39uint8データ長2のみ
40uint16データADC1の電圧(mV)
センサーデータの末端
42uint8チェックサム1直前までのCRC8
uint8チェックサム2チェックサム1までのLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

出力データの例

ダイスモードの例を示します。ムーブモードの場合は、センサーデータ2イベントが異なります。

:80000000B400048106664801800304003400038035001205040403000000113008020D2011300102052C59B7
#データ内容
:charヘッダ:
800000000uint32中継機のシリアルID中継なし
B14uint8LQI177/255
00085uint16続き番号8
810666487uint32送信元のシリアルID0x2019E3B
0111uint8送信元の論理デバイスID0x1066648
8012uint8センサー種別
0313uint8PAL基板バージョンとPAL基板IDTWELITE CUE ダイス/ムーブ
0414uint8センサーデータの数4
センサーデータ1
0015uint8情報ビット拡張バイトなしuint8
3416uint8データソースパケットプロパティ
0017uint8拡張バイトなし
0318uint8データ長3バイト
80350019[uint8]データID128、イベント発生(他ADC1と電源のみ)
センサーデータ2
1222uint8情報ビット拡張バイトありuint32
0523uint8データソースイベント
0424uint8拡張バイト加速度イベント
0425uint8データ長4バイト
0300000026uint32データダイスモード、サイコロ:3
センサーデータ3
1130uint8情報ビット拡張バイトありuint16
3031uint8データソース電圧
0832uint8拡張バイト電源電圧
0233uint8データ長2バイト
0D2034uint16データ3360mV
センサーデータ4
1136uint8情報ビット拡張バイトありuint16
3037uint8データソース電圧
0138uint8拡張バイトADC1の電圧
0239uint8データ長2バイト
052C40uint16データ1324mV
センサーデータの末端
5942uint8チェックサム10x0C
B7uint8チェックサム20x0E
charフッタ'\r'
charフッタ'\n'

データの判別条件

親機・中継機アプリは、さまざまな種類の子機からデータを受信することができます。

出力されたデータがキューアプリ(動作センサーパルモードのムーブあるいはダイスモード)のものであるかを確認するには、次の箇所を参照してください。

#データ項目条件
0uint32中継機のシリアルIDMSBが1であること
7uint32送信元のシリアルIDMSBが1であること
12uint8センサー種別0x80であること
13uint8PAL基板バージョンとPAL基板ID0x03であること
--ペイロードのサイズ43バイトであること

パーサの実装例

1.3.2.1.1.1.1.4.3 - アリアアプリからの出力(親機・中継機アプリ)

アリアアプリからデータを受信した際の出力書式

TWELITE ARIA モード

データ形式

#データ内容備考
charヘッダ:のみ
0uint32中継機のシリアルID中継なしの場合80000000
4uint8LQI0-255
5uint16続き番号
7uint32送信元のシリアルID0x8???????
11uint8送信元の論理デバイスID
12uint8センサー種別0x80のみ
13uint8PAL基板バージョンとPAL基板ID0x06のみ
14uint8センサーデータの数7のみ
センサーデータ1
15uint8情報ビット0x00のみ
16uint8データソース0x34のみ
17uint8拡張バイト0x00のみ
18uint8データ長3のみ
19[uint8]データパケットプロパティデータ
センサーデータ2
22uint8情報ビット0x12のみ
23uint8データソース0x05のみ
24uint8拡張バイト0x35または0x00
25uint8データ長4のみ
26uint32データイベントデータ
センサーデータ3
30uint8情報ビット0x11のみ
31uint8データソース0x30のみ
32uint8拡張バイト0x08のみ
33uint8データ長2のみ
34uint16データ電源電圧(mV)
センサーデータ4
36uint8情報ビット0x11のみ
37uint8データソース0x30のみ
38uint8拡張バイト0x01のみ
39uint8データ長2のみ
40uint16データADC1の電圧(mV)
センサーデータ5
42uint8情報ビット0x00のみ
43uint8データソース0x00のみ
44uint8拡張バイト0x00のみ
45uint8データ長1のみ
46uint8データ磁気データ
センサーデータ6
47uint8情報ビット0x05のみ
48uint8データソース0x01のみ
49uint8拡張バイト0x00のみ
50uint8データ長2のみ
51int16データ温度データ
センサーデータ7
53uint8情報ビット0x01のみ
54uint8データソース0x02のみ
55uint8拡張バイト0x00のみ
56uint8データ長2のみ
57uint16データ湿度データ
センサーデータの末端
59uint8チェックサム1直前までのCRC8
uint8チェックサム2チェックサム1までのLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

出力データの例

:80000000CF00028201BAA201800607003400038135001205350401000000113008020D201130010204ED00000001800501000209D0010200020F347934[CR][LF]
#データ内容
:charヘッダ:
800000000uint32中継機のシリアルID中継なし
CF4uint8LQI207/255
00025uint16続き番号2
8201BAA27uint32送信元のシリアルID0x201BAA2
0111uint8送信元の論理デバイスID0x01
8012uint8センサー種別
0613uint8PAL基板バージョンとPAL基板IDTWELITE ARIA
0714uint8センサーデータの数7
センサーデータ1
0015uint8情報ビット拡張バイトなしuint8
3416uint8データソースパケットプロパティ
0017uint8拡張バイトなし
0318uint8データ長3バイト
81350019[uint8]データID129、タイマイベント発生
センサーデータ2
1222uint8情報ビット拡張バイトありuint32
0523uint8データソースイベント
3524uint8拡張バイトタイマイベント
0425uint8データ長4バイト
0100000026uint32データタイマによる起床
センサーデータ3
1130uint8情報ビット拡張バイトありuint16
3031uint8データソース電圧
0832uint8拡張バイト電源電圧
0233uint8データ長2バイト
0D2034uint16データ3360mV
センサーデータ4
1136uint8情報ビット拡張バイトありuint16
3037uint8データソース電圧
0138uint8拡張バイトADC1の電圧
0239uint8データ長2バイト
04ED40uint16データ1261mV
センサーデータ5
0042uint8情報ビット拡張バイトなしuint8
0043uint8データソース磁気
0044uint8拡張バイトなし
0145uint8データ長1バイト
8046uint8データ磁石なし(定期送信)
センサーデータ6
0547uint8情報ビット拡張バイトなしint16
0148uint8データソース温度
0049uint8拡張バイトなし
0250uint8データ長2バイト
09D051int16データ25.12°C
センサーデータ7
0153uint8情報ビット拡張バイトなしuint16
0254uint8データソース湿度
0055uint8拡張バイトなし
0256uint8データ長2バイト
0F3457uint16データ38.92%
センサーデータの末端
7959uint8チェックサム10x79
34uint8チェックサム20x34
charフッタ'\r'
charフッタ'\n'

データの判別条件

親機・中継機アプリは、さまざまな種類の子機からデータを受信することができます。

出力されたデータがアリアアプリ(TWELITE ARIAモード)のものであるかを確認するには、次の箇所を参照してください。

#データ項目条件
0uint32中継機のシリアルIDMSBが1であること
7uint32送信元のシリアルIDMSBが1であること
12uint8センサー種別0x80であること
13uint8PAL基板バージョンとPAL基板ID0x06であること
--ペイロードのサイズ60バイトであること

パーサの実装例

開閉センサーパルモード

1.3.2.1.1.1.1.4.4 - パル・キュー・アリアアプリからの出力の詳細(親機・中継機アプリ)

パル・キュー・アリアアプリに共通する出力書式の詳細
パル・キュー・アリアアプリの子機から受信したデータは、共通の書式に沿って出力されます。ここには、その詳細を記しています。それぞれの具体的な出力例は、各アプリのページをご覧ください。

全体

データ形式

#データ内容備考
charヘッダ:のみ
0uint32中継機のシリアルID中継なしの場合80000000
4uint8LQI0-255
5uint16続き番号
7uint32送信元のシリアルID0x8???????
11uint8送信元の論理デバイスID
12uint8センサー種別0x80のみ
13uint8PAL基板バージョンとPAL基板ID0x81など
14uint8センサーデータの数
15[uint8]センサーデータの羅列長さ\(N\)のバイト列
15+\(N\)uint8チェックサム1直前までのCRC8
uint8チェックサム2チェックサム1までのLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

出力データの例

:80000000A8001C82012B1E01808103113008020D0C1130010203E40000000101EC6E
#データ内容
:charヘッダ:
800000000uint32中継機のシリアルID中継なし
A84uint8LQI168/255
001C5uint16続き番号28
82012B1E7uint32送信元のシリアルID0x2012B1E
0111uint8送信元の論理デバイスID0x01
8012uint8センサー種別-
8113uint8PAL基板バージョンとPAL基板ID0x81
0314uint8センサーデータの数3
1130...010115[uint8]センサーデータの羅列長さ17のバイト列
EC15+17uint8チェックサム10xEC
6Euint8チェックサム20x6E
charフッタ'\r'
charフッタ'\n'

センサーデータ

データ形式

#データ内容備考
0uint8情報ビットデータの型や拡張バイトの有無
1uint8データソースセンサー値の種類
2uint8拡張バイトセンサー値の付加情報
3uint8データ長センサー値の長さ
4[uint8]データセンサー値

出力データの例

113008020D0C
#データ内容
110uint8情報ビット拡張バイトあり、uint16
301uint8データソース電圧
082uint8拡張バイト電源電圧
023uint8データ長2バイト
0D0C4[uint8]データ3340mV

情報ビット

センサー値のデータ型や拡張バイトの有無、読み込みエラーの有無を示します。

bit76543210
機能ERR--EXT-TYP:2TYP:1TYP:0

各機能は次の内容を示します。

機能説明内容
ERR読み込みエラーの有無0正常
1エラーあり
EXT拡張バイトの有無0拡張バイトなし
1拡張バイトあり
TYPデータ型000uint8
001uint16
010uint32
011N/A
100int8
101int16
110int32
111[uint8]

データソース

センサー値の種類を示します。

内容
0x00磁気
0x01温度
0x02湿度
0x03照度
0x04加速度
0x05イベント
0x30電圧
0x34パケットプロパティ

拡張バイト

連続データのインデックスなど、センサー値の付加情報を示します。

データソースが磁気/温度/湿度/照度/パケットプロパティの場合

なし

データソースが加速度の場合

加速度サンプルデータの属性を示します。

bit76543210
機能SFQ:2SFQ:1SFQ:0SNM:4SNM:3SNM:2SNM:1SNM:0

各機能は次の内容を示します。

機能説明内容
SFQサンプリング周波数0000x00|SNM25Hz
0010x20|SNM50Hz
0100x40|SNM100Hz
0110x60|SNM190Hz
100以上未定義
SNMサンプル番号0-31古い順

データソースがイベントの場合

イベントの発生要因を示します。

内容
0x00磁気
0x01温度
0x02湿度
0x03照度
0x04加速度
0x31デジタル入力
0x35タイマ

データソースが電圧の場合

対象を示します。

内容
0x01ADC1
0x02ADC2
0x03ADC3
0x04ADC4
0x08電源

データ長

続くデータのバイト数を示します。

データ

センサー値を表します。

データソースが磁気の場合

データ型はuint8です。

内容
0x00磁石なし
0x01N極が近づいた
0x02S極が近づいた
0x80磁石なし(定期送信)
0x81N極が近くにある(定期送信)
0x82S極が近くにある(定期送信)

データソースが温度の場合

データ型はint16です。

100倍されたセ氏の温度を表します。

データソースが湿度の場合

データ型はuint16です。

100倍された相対湿度を表します。

データソースが照度の場合

データ型はuint32です。

ルクスの値を表します。

データソースが加速度の場合

int16のデータが3つ続きます。

X,Y,Z軸の値(mG)の合計は6バイトです。

byte012345
内容X:15-8X:7-0Y:15-8Y:7-0Z:15-8Z:7-0

データソースがイベントの場合

uint8のデータが4つ続きます。

先頭のデータがイベントの内容を表し、残りは未使用です。

byte0123
内容使用未使用未使用未使用
拡張バイトが磁気の場合
先頭の値内容
0x00磁石なし
0x01N極が近くにある
0x02S極が近くにある
拡張バイトが加速度の場合
先頭の値内容
0x01サイコロ:1
0x02サイコロ:2
0x03サイコロ:3
0x04サイコロ:4
0x05サイコロ:5
0x06サイコロ:6
0x08シェイク
0x10ムーブ
拡張バイトがタイマの場合
先頭の値内容
0x01タイマによる起床

データソースが電圧の場合

データ型はuint16です。

mV単位の電圧を表します。

データソースがパケットプロパティの場合

uint8のデータが3つ続きます。

byte012
データパケットID起床要因の根源起床要因の条件

各データは次の内容を表します。

データ内容
パケットID0イベントなし、ADC1と電源の電圧のみ
1-127イベントなし、その他のデータあり
128イベントあり、ADC1と電源の電圧のみ
129-255イベントあり、その他のデータあり
起床要因の根源0x00磁気
0x01温度
0x02湿度
0x03照度
0x04加速度
0x31デジタル入力
0x35タイマ
起床要因の条件0x00イベントが発生した
0x01値が変化した
0x02値がしきい値を上回った
0x03値がしきい値を下回った
0x04値が範囲を満たした

1.3.2.1.1.1.1.5 - actからの出力(親機・中継機アプリ)

act からデータを受信した際の出力書式

act から受信したデータ

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信元の論理デバイスID
1uint8コマンド種別0xAAのみ
2uint8応答ID0x00-0x7F
3uint32送信元のシリアルID
7uint32送信先のシリアルID論理デバイスID指定時は00000000
11uint8LQI0-255
12uint16データのバイト数
14[uint8]任意のデータ長さ\(N\)のバイト列
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

出力データの例

:FEAA008201015A00000000B7000F424154310F0CEE000B03FF03FF03FF92
#データ内容
:charヘッダ:
FE0uint8送信元の論理デバイスID0xFE
AA1uint8コマンド種別0xAA
002uint8応答ID0x00
8201015A3uint32送信元のシリアルID0x201015A
000000007uint32送信先のシリアルID論理デバイスID指定
B711uint8LQI183/255
000F12uint16データのバイト数15バイト
424154310F0CEE000B03FF03FF03FF14[uint8]任意のデータそのまま
92uint8チェックサム0x92
charフッタ\r
charフッタ\n

1.3.2.1.1.1.1.6 - 無線タグアプリからの出力(親機・中継機アプリ)

無線タグアプリからデータを受信した際の出力書式
子機へ主なセンサーを接続した際の出力を記載します。

アナログセンサー

データ形式

#データ内容備考
charヘッダ:のみ
0uint32中継機のシリアルID中継なしは80000000
4uint8LQI0-255
5uint16続き番号
7uint32送信元のシリアルID
11uint8送信元の論理デバイスID
12uint8センサー種別
13uint8電源電圧(mV)電源電圧の計算を参照
14uint16ADC1の電圧
16uint16ADC2の電圧
18uint32未使用
22uint8チェックサム

出力データの例

:80000000B700628201015A0010DF08FD09A300000000E9
#データ内容
:charヘッダ:
800000000uint32中継機のシリアルID中継なし
B74uint8LQI183/255
00625uint16続き番号98
8201015A7uint32送信元のシリアルID0x201015A
0011uint8送信元の論理デバイスID0x00
1012uint8センサー種別アナログセンサー
DF13uint8電源電圧(mV)3330mV
08FD14uint16ADC1の電圧2301mV
09A316uint16ADC2の電圧2467mV
0000000018uint32未使用
E922uint8チェックサム0xE9
charフッタ\r
charフッタ\n

加速度センサー(ADXL34x / TWELITE 2525A)

データ形式

#データ内容備考
charヘッダ:のみ
0uint32中継機のシリアルID中継なしは80000000
4uint8LQI0-255
5uint16続き番号
7uint32送信元のシリアルID
11uint8送信元の論理デバイスID
12uint8センサー種別
13uint8電源電圧(mV)電源電圧の計算を参照
14uint16ADC1の電圧
16uint16ADC2の電圧
18uint8センサーモード番号
19int16X軸の加速度単位はmG*10
21int16Y軸の加速度単位はmG*10
23int16Z軸の加速度単位はmG*10
25uint8チェックサム

出力データの例

:8000000063001781013C850035DF057702F2000000FF96FFF0BB
#データ内容
:charヘッダ:
800000000uint32中継機のシリアルID中継なし
634uint8LQI99/255
00175uint16続き番号23
81013C857uint32送信元のシリアルID0x1013C85
0011uint8送信元の論理デバイスID0x00
3512uint8センサー種別加速度センサー(ADXL34x)
DF13uint8電源電圧(mV)3330mV
057714uint16ADC1の電圧1399mV
02F216uint16ADC2の電圧754mV
0018uint8センサーモード番号通常
000019int16X軸の加速度0mG
FF9621int16Y軸の加速度-1060mG
FFF023int16Z軸の加速度-160mG
BB25uint8チェックサム0xBB
charフッタ\r
charフッタ\n

スイッチ

データ形式

#データ内容備考
charヘッダ:のみ
0uint32中継機のシリアルID中継なしは80000000
4uint8LQI0-255
5uint16続き番号
7uint32送信元のシリアルID
11uint8送信元の論理デバイスID
12uint8センサー種別
13uint8電源電圧(mV)電源電圧の計算を参照
14uint16ADC1の電圧
16uint16ADC2の電圧
18uint8センサーモード番号0がHi→Lo、1がLo→Hi
19uint8DI1の状態1がLo
20uint8未使用
21uint8チェックサム

出力データの例

:800000009C00118201015A00FEDF000709A300010064
#データ内容
:charヘッダ
800000000uint32中継機のシリアルID中継なし
9C4uint8LQI156/255
00625uint16続き番号98
8201015A7uint32送信元のシリアルID0x201015A
0011uint8送信元の論理デバイスID0x00
FE12uint8センサー種別スイッチ
DF13uint8電源電圧(mV)3330mV
000714uint16ADC1の電圧7mV
09A316uint16ADC2の電圧2467mV
0018uint8センサーモード番号Hi→Lo
0119uint8DI1の状態Lo
0020uint8未使用
6421uint8チェックサム0x64
charフッタ\r
charフッタ\n

電源電圧の計算

電源電圧 \(V_{cc}\) は、受信した値 \(e_{cc}\) を使って次のように表すことができます。

$$\begin{cases} V_{cc} = 1950+5e_{cc} & (e_{cc} <= 170) \\ V_{cc} = 2800+10(e_{cc}-170) & (e_{cc} > 170) \end{cases}$$

単位は mV

1.3.2.1.1.1.2 - 親機・中継機アプリの送信コマンド

子機へデータを送信する際の入力

既定の書式でシリアルポートから入力されたコマンドを子機へ送信します。

1.3.2.1.1.1.2.1 - 超簡単!標準アプリへの入力(親機・中継機アプリ)

超簡単!標準アプリの出力を制御するためのコマンド
超簡単!標準アプリの出力を制御できます。

デジタル・アナログ入出力

0x80:相手端末の出力変更

相手端末の出力信号を制御します。

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID親機0x00,子機0x01-0x64,全子機0x78
1uint8コマンド番号0x80のみ
2uint8書式バージョン0x01のみ
3uint8デジタル信号LSBからDOxに対応、0でHigh
4uint8デジタル信号マスクLSBからDOxに対応、1で有効
5uint16PWM1信号0-1024,0xFFFFで無効
7uint16PWM2信号0-1024,0xFFFFで無効
9uint16PWM3信号0-1024,0xFFFFで無効
11uint16PWM4信号0-1024,0xFFFFで無効
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

1.3.2.1.1.1.2.2 - シリアル通信アプリへの入力(親機・中継機アプリ)

シリアル通信アプリへデータを送信するコマンド
シリアル通信アプリの子機へデータを送信できます(書式モード、簡易形式)

UART

書式モード:アスキー・簡易形式

App_Wings v1.3 以降では、書式モード(A)の簡易形式に対応しています。

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID親機0x00,子機0x01-0x64,全子機0x78
1uint8コマンド番号0x80未満の任意の値
2[uint8]任意のデータ長さ\(N\)のバイト列(\(N\leqq80\)を推奨)
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

1.3.2.1.1.1.2.3 - パルアプリ(通知パル)への入力(親機・中継機アプリ)

通知パルのLEDを制御するためのコマンド
通知パルのLEDを制御できます。
:0190010004000169[CR][LF]
 ^1^2^3^^^^^^^4^5
番号バイト数意味データ例備考
11送信先の論理デバイスID01

送信先のTWELITE PALの論理デバイスIDを指定します。
0x01から0x64まで指定可能です。

21コマンド種別90
31コマンドパラメータ数01コマンドパラメータの数を指定します。例えば、コマンドパラメータを1つだけ指定するなら1に、2つ指定するには2にします。
4コマンド数x4コマンドパラメータ00040001

イベントやLEDの色などを指定するためのパラメータを指定します。
詳細はコマンドパラメータを参照してください。

51チェックサム69

1~4の各バイトの和を8ビット幅で計算し2の補数をとります。つまりデータ部の各バイトの総和+チェックサムバイトを8ビット幅で計算すると0になります。
チェックサムバイトをアスキー文字列2文字で表現します。
例えば 00A01301FF123456 では 0x00 + 0xA0 + … + 0x56 = 0x4F となり、この二の補数は0xB1 です。(つまり 0x4F + 0xB1 = 0)
チェックサムをXにすることでチェックサムを省略可能です。

62フッター[CR][LF][CR] (0x0D) [LF] (0x0A) を指定します。ただし、チェックサムをXで省略する場合はフッターも省略可能です。

コマンドパラメータ

4バイトのコマンドパラメータを組み合わせてコマンドを指定します。

0x00:イベントIDを送信する

TWELITE PALは受信したイベントIDごとの振る舞いが設定されております。 本パラメータでは送信先のTWELITE PALにイベントIDを送信し、設定した動作を行います。

番号バイト数内容備考
11コマンドパラメータID0x00
21送信先PAL ID

送信先のPAL IDを指定します。
0x04:通知パル
0xFF:すべてのTWELITE PAL

31未使用領域0x00固定
41イベントID0~16までのイベントIDを指定します。

0x01 : LEDの色、点滅パターン、明るさを送信する

送信先の通知パルにLEDの色、点滅パターン、明るさを送信します。

番号バイト数内容備考
11コマンドパラメータID0x01
21


0:赤
1:緑
2:青
3:黄色
4:紫
5:水色
6:白
7:暖かい白

31点滅パターン

0:常時点灯
1~3:点滅パターン(数値が大きくなるほど点滅が早くなる。)

41明るさ

0:消灯
0x01~0x0F:明るさ(数値が大きいほど明るくなる。)

0x02 : 点灯時間を送信する

通知パルのLEDの点灯時間を送信します。

番号バイト数内容備考
11コマンドパラメータID0x02
21

未使用領域

0xFF固定
31未使用領域0x00固定
41点灯時間秒で指定(0は常時点灯)

0x03:LEDの色をRGBWで指定する

通知パルのLEDの点灯色をRGBWで送信します。

番号バイト数内容備考
11コマンドパラメータID0x03
21

未使用領域

0xFF固定
32LEDの点灯色

LSBからRGBWの順番で4ビットずつ指定する。

数値が大きいほど明るい

0x04:点滅パラメータを指定する。

通知パルのLEDの点滅周期と点滅Dutyを送信します。

番号バイト数内容備考
11コマンドパラメータID0x04
21

未使用領域

0xFF固定
31点滅時間の割合

0x00~0xFFで指定する。

数値が大きいほど1周期当たりの点灯時間が長くなる。

1周期の半分だけ点灯させるには0x7Fを指定する。

41点滅周期

0x00~0xFFで指定する。

設定値が1大きくなるごとに点滅の周期が約0.04sずつ増える。

1周期1秒にするには0x17を指定する。

コマンド例

例1:イベントを送信する

論理デバイスIDが1のNOTICE PALに対してイベント1を送信するコマンド例です。

:0190010004000169
 ^1^2^3^4^5^6^7^8
番号バイト数意味データ例データ例の内容備考
11送信先の論理デバイスID01送信先の論理デバイスIDは0x01
21コマンド種別900x90コマンド90固定
31コマンド数01コマンドは1個
41コマンドID00コマンド00
51送信先PAL ID04通知パルに対して送信する
61未使用領域00
71イベントID01イベント10x00~0x10まで
81チェックサム69

例2:通知パルのLEDの点灯色を送信する

論理デバイスIDが1のNOTICE PALに対して明るさ8で白色にゆっくり点滅させるためのコマンドです。

:019001010601085E
 ^1^2^3^4^5^6^7^8
番号バイト数意味データ例データ例の内容備考
11送信先の論理デバイスID01送信先の論理デバイスIDは0x01
21コマンド種別900x90コマンド90固定
31コマンド数01コマンドは1個
41コマンドパラメータID01コマンドパラメータID 0x01
5106
61点滅パターン01点滅
71明るさ08明るさ80x00~0x0Fまで
81チェックサム5E

例3:通知パルのLEDの点灯色と点灯時間を送信する

論理デバイスIDが1のNOTICE PALに対して紫に点灯させ、点灯後1秒で消灯させるコマンドです。

:0190020104000802FF00015E
 ^1^2^3^4^5^6^7^8^9^a^b^c
番号バイト数意味データ例データ例の内容備考
11送信先の論理デバイスID01送信先の論理デバイスIDは0x01
21コマンド種別900x90コマンド90固定
31コマンド数02コマンドは2個
41コマンドパラメータID01コマンドパラメータID 0x01
5104
61点滅パターン00点灯
71明るさ08明るさ80x00~0x0Fまで
81コマンドパラメータID02コマンドパラメータID 0x02
91未使用領域FF
a1未使用領域00
b1点灯時間01点灯後1秒で消える
c1チェックサム5E

例4:通知パルに詳細な点灯色を送信する

論理デバイスIDが1のNOTICE PALに対して紫に点灯させるコマンドです。

:01900103FF0F0459
 ^1^2^3^4^5^^^6^7
番号バイト数意味データ例データ例の内容備考
11送信先の論理デバイスID01送信先の論理デバイスIDは0x01
21コマンド種別900x90コマンド90固定
31コマンド数01コマンドは2個
41コマンドパラメータID03コマンドパラメータID 0x03
51未使用FF
62LEDの点灯色0F04青:15、赤4の明るさで点灯させる。

LSBからRGBWの順番で各色4bitずつ(0~15)で指定する。

数値が大きいほど明るい

71チェックサム59

例5:通知パルのLEDの点灯色と点灯時間を送信する

論理デバイスIDが1のNOTICE PALに対して紫に点灯させ、点灯後1秒で消灯させるコマンドです。

:0190020104000802FF00015E
 ^1^2^3^4^5^6^7^8^9^a^b^c
番号バイト数意味データ例データ例の内容備考
11送信先の論理デバイスID01送信先の論理デバイスIDは0x01
21コマンド種別900x90コマンド90固定
31コマンド数02コマンドは2個
41コマンドパラメータID01コマンドパラメータID 0x01
5104
61点滅パターン00点灯
71明るさ08明るさ80x00~0x0Fまで
81コマンドパラメータID02コマンドパラメータID 0x02
91未使用領域FF
a1未使用領域00
b1点灯時間01点灯後1秒で消える
c1チェックサム5E

1.3.2.1.1.2 - 親機・中継機アプリの中継機モード

子機や親機から受信したデータを再送信する
中継機モードでは、受信したパケットを再送信することで、子機と親機の通信距離を延ばすことができます。

設定例

中継機として使用するには、インタラクティブモードの動作モード1以上としてください。

中継方式

TWELITE NETでは無線パケットの中継配送について、大きく分けて下表で示す2つの方式を用意しており、アプリケーションごとに異なります。本アプリでは下表で示すアプリケーションのパケットを識別し、中継することができます。

中継方式対応アプリ
単純ネット超簡単!標準アプリ、リモコンアプリ、シリアル通信アプリ、アクト
中継ネット無線タグアプリ、パルアプリ、キューアプリ

単純ネットを使用した中継

単純ネットを使用するアプリの中継を行う場合、動作モードの値を1以上に設定することで3回まで中継することができます。

例えば、1. のように親機と子機の間に中継機が3台以内であれば親機にデータが届きますが、2. ように中継機が4台以上ある場合は親機にデータが届きません。

1. 子機  --->  中継機  --->  中継機  --->  中継機  --->  親機
   → 親機が子機のデータを3回中継して受信できる。
2. 子機  --->  中継機  --->  中継機  --->  中継機  --->  中継機  -x->  親機\
   → 中継4回目で中継することをやめる。

単純ネットによる中継は、基本的に同報通信を使用して通信を行い、受信したパケットをすべて中継を行います。そのため、中継ネットワークを形成、維持するための通信が必要ないという利点がありますが、中継機が増えるほど爆発的に通信量が多くなることがあるという欠点もあります。

詳しくは こちら を参照ください。

中継ネットを使用した中継

中継ネットを使用するアプリのデータを1段の中継を行う場合、動作モードの値を1に設定してしてください。

複数回の中継を行う場合は、親機から遠くなるにつれて動作モードの設定値を大きくしてください。(設定値が昇順になっていれば設定値が飛んでもかまいません。)

本方式の最大中継回数は63回までです。

例1:1回の中継を行う場合\
子機 ---> 中継機(動作モード:1) ---> 親機

例2:2回の中継を行う場合\
子機  --->  中継機(動作モード:2) --->  中継機(動作モード:**1**)  --->  親機

例3:3回の中継を行う場合\
子機 ---> 中継機(動作モード:6) ---> 中継機(動作モード:3) ---> 中継機(動作モード:1) ---> 親機

中継ネットは上り方向の配送を効率的に実施する目的を持って設計されたツリー型ネットワークで、中継機は上位レイヤ(より動作モードの設定値が小さい親機もしくは中継機)を探索し、発見した上位レイヤ1台に対して中継を行います。

そのため、中継機の台数が増えても単純ネットほどは通信量が多くなりにくいですが、接続先を探索、維持するための通信が発生します。

詳しくは こちら をご覧ください。

静的ルーティング(中継先を直接指定)をする場合

中継ネットでの中継を行うときに、下図のような配置を考えた場合、中継機2の接続先は親機もしくは中継機1のどちらかを自動的に選択します。

基本的には、中継する回数が少ない方が親機への配送率が高くなる場合が多いですが、中継機2の接続先として親機が選択されてしまった場合、親機と中継機2の間に障害物があるため、通信品質が悪くなり、親機への配送率が中継機1を経由するときより低くなる可能性が高くなります。

そのため、本アプリには中継機の接続先を TWELITE のシリアル番号で指定する機能 (静的ルーティング機能) があります。

中継ネット

静的ルーティングを行う場合は、中継機2→中継機1への経路を静的にする、または全ての経路を静的に設定します。

すべての経路の設定にはその分だけ設定が多くなり、また、中継機の故障や電波状況の変化といった状況を想定した冗長化に対応できない点がありますが、上位通信先を確定するまでの時間をなくし、速やかに中継動作に移行できる利点があります。

静的ルーティングをするには下表のように中継機1には親機のSID、中継機2には中継機1のSIDになるように接続先を設定してください。

例: 2段中継の場合 (親機 ← 中継機1 ← 中継機2 ← 子機)

TWELITEのSID例接続先(A: Access Point Address)の設定例動作モード(l:Mode)の設定例
親機810F155E-0
中継機1810E18E8810F155E (親機のSID)※1
中継機2810F17FF810E18E8 (中継機1のSID)2

※上図の壁による影響のみに対処したい場合は設定不要です。

1.3.2.1.2 - インタラクティブモード(親機・中継機アプリ)

インタラクティブモードによる詳細な設定変更
インタラクティブモードでアプリの詳細設定を行うことができます。

ここでは親機・中継機アプリ(App_Wings)に固有の機能を説明します。共通機能については、TWELITE APPS マニュアル のトップページを参照してください。

表示例

次のような画面を表示します。

[CONFIG MENU/App_Wings:0/v1-02-1/SID=820163B2]
a: (0x67720102) Application ID [HEX:32bit]
c: (18        ) Channels Set
x: (      0x03) RF Power/Retry [HEX:8bit]
b: (38400,8N1 ) UART Baud [9600-230400]
o: (0x00000000) Option Bits [HEX:32bit]
k: (0xA5A5A5A5) Encryption Key [HEX:32bit]
m: (         0) Mode (Parent or Router)
A: (0x00000000) Access point address [HEX:32bit]

 [ESC]:Back [!]:Reset System [M]:Extr Menu

コマンド

項目初期値備考
aアプリケーションID0x6772010232bit
c周波数チャネル1811-26
x再送回数と送信出力03
再送回数01-9回、0は初期値の0回
送信出力30-3
bUART代替設定38400,8N1オプションビットで有効化
oオプションビット0x00000000その他の詳細設定
k暗号化鍵0xA5A5A5A532bit
m動作モード0親機0中継機1中継ネット1-63
A中継先0x00000000中継機モードのみ

各コマンドの詳細を次に示します。

a:アプリケーションID

通信を行う端末はすべて同一の値とします。論理的にネットワークを分離します。

c:周波数チャネル

通信を行う端末はすべて同一の値とします。物理的にネットワークを分離します。

x:送信出力と再送回数

電波の送信出力と、パケットを追加で送信する回数を指定します。

b:UART代替設定

オプションビットのUART代替設定の有効化を設定した場合のUARTオプションを指定します。

値にはボーレートとパリティの設定をカンマで区切って指定します。

ボーレートは、9600/19200/38400/57600/115200/230400から選択できます。他の値を指定すると、誤差が生じる可能性があります。

パリティはN: 無し、O: Odd(奇数)、E: Even(偶数)を設定します。ハードウェアフローは設定できません。8N1, 7E2 などと設定できますが、8N1 以外の設定は未検証です。事前に動作をご確認ください。

o:オプションビット

32bit の数値を指定します。各ビットに紐付いた設定を有効化できます。

対象ビット設定項目初期
0x00000200UART代替設定の有効化0️⃣
0x00000400定期送信パケットの出力を停止0️⃣
0x00001000暗号化通信の有効化0️⃣
0x00002000暗号化通信時の平文受信を有効化0️⃣

k:暗号化鍵

オプションビットの暗号化通信の有効化を設定した場合の暗号化鍵を32bitの16進数で指定します。

m:動作モード

0は親機モード、1は中継機モードへ設定します。

中継機モードで多段中継を行うときには、2-63とすることで中継機のレイヤを指定できます。

A:中継先

中継機モードで静的ルーティングを行うときに接続する上位段の端末のシリアルID(0x8???????)を指定します。このとき、0x00000000とした場合は自動検索します。

オプションビットの詳細

オプションビットの値の各ビットに紐付いた設定を解説します。

00000200:UART代替設定の有効化

b:UART代替設定を有効とします。

00000400:定期送信パケットの出力を停止

超簡単!標準アプリとリモコンアプリの1秒毎の定期送信と連続モード時のUART出力を停止します。

00001000:暗号化通信の有効化

暗号化通信を有効にします。相手側の暗号化通信も有効化する必要があります。

00002000:暗号化通信時の平文受信を有効化

暗号化通信を有効とした際に、暗号化していないパケットも受信するようにします。

1.3.3 - リモコンアプリ マニュアル

デジタル信号の伝送
デジタル信号の伝送に特化したファームウェアです。超簡単!標準アプリと比較して豊富な機能を備えています。

1.3.3.1 - リモコンアプリ マニュアル

最新版

導入方法

リモコンアプリ(App_IO)を導入するには TWELITE STAGE SDK をインストールして、TWELITE STAGE アプリを使って書き換えてください。[アプリ書換] → [TWELITE APPSビルド&書換] → [App_IO]を選択します。

機能

12個までのスイッチ等の接点入力を無線送信できます。

超簡単!標準アプリ(App_Twelite)との違いは次の通りです。

  • ポート数が増加し、最大12ポートを使用できる
  • 入出力の割り当ては4種類(12:0, 8:4, 6:6, 0:12)
  • 外部配線で周波数チャネルを4種類から選択できる。
  • 通信を暗号化できる
  • 特定の相手とのみ通信できる(アプリケーションIDの自動設定)

1.3.3.1.1 - リモコンアプリのピン配置

リモコンアプリが使用するピンの機能

TWELITE / TWELITE DIP

リモコンアプリが使用するピンの機能を、下図の超簡単!標準アプリのピン名を使って表します。

超簡単!標準アプリのピン配置表

超簡単!標準アプリのピン配置表

DIP #IO標準リモコン機能
1GNDGNDGND電源入力
2DIO14SCLI9/O9デジタル入出力
3DIO7RXRXシリアル入出力
4DIO5PWMI11/O11デジタル入出力
5DIO18DO1I5/O1デジタル入出力
6DO0PWMLEDステータスLED出力
7DO1M3
8DIO19DO2I6/O2デジタル入出力
9DIO4DO3I7/O3デジタル入出力
10DIO6TXTXシリアル入出力
11DIO8PWMI12/O12デジタル入出力
12DIO9DO4I8/O4デジタル入出力
13DIO10M1M1モード設定入力
14GNDGNDGND電源入力
28VCCVCCVCC電源入力
27DIO3M3M3モード設定入力
26DIO2M2M2モード設定入力
25DIO1AI4C2チャネル設定入力
24ADC2AI3
23DIO0AI2C1チャネル設定入力
22ADC1AI1
21RESETNRSTRSTリセット入力
22DIO17BPSBPS代替ボーレート設定入力
19DIO15SDAI10/O10デジタル入出力
18DIO16DI4I4/O8デジタル入出力
17DIO11DI3I3/O7デジタル入出力
16DIO13DI2I2/O6デジタル入出力
15DIO12DI1I1/O5デジタル入出力

電源入力

VCC/GND には、3.3V(2.0-3.6V)の電源を接続します。

デジタル入出力

子機:12入力0出力/親機:12出力0入力

デフォルトの入出力の割り当て。

名称子機親機標準DIP #
I1/O5I1O5DI115
I2/O6I2O6DI216
I3/O7I3O7DI317
I4/O8I4O8DI418
I5/O1I5O1DO15
I6/O2I6O2DO28
I7/O3I7O3DO39
I8/O4I8O4DO412
I9/O9I9O9SCL2
I10/O10I10O10SDA19
I11/O11I11O11PWM14
I12/O12I12O12PWM411

子機:8入力4出力/親機:8出力4入力

オプションビット:0x00001000 の設定を有効とした場合の入出力の割り当て。

名称子機親機標準DIP #
I1/O5I1I1DI115
I2/O6I2I2DI216
I3/O7I3I3DI317
I4/O8I4I4DI418
I5/O1O1O1DO15
I6/O2O2O2DO28
I7/O3O3O3DO39
I8/O4O4O4DO412
I9/O9I5O5SCL2
I10/O10I6O6SDA19
I11/O11I7O7PWM14
I12/O12I8O8PWM411

子機:6入力6出力/親機:6出力6入力

オプションビット:0x00002000 の設定を有効とした場合の入出力の割り当て。

名称子機親機標準DIP #
I1/O5I1I1DI115
I2/O6I2I2DI216
I3/O7I3I3DI317
I4/O8I4I4DI418
I5/O1O1O1DO15
I6/O2O2O2DO28
I7/O3O3O3DO39
I8/O4O4O4DO412
I9/O9O5I5SCL2
I10/O10O6I6SDA19
I11/O11I5O5PWM14
I12/O12I6O6PWM411

子機:0入力12出力/親機:0出力12入力

オプションビット:0x00003000 の設定を有効とした場合の入出力の割り当て。

名称子機親機標準DIP #
I1/O5O5I1DI115
I2/O6O6I2DI216
I3/O7O7I3DI317
I4/O8O8I4DI418
I5/O1O1I5DO15
I6/O2O2I6DO28
I7/O3O3I7DO39
I8/O4O4I8DO412
I9/O9O9I9SCL2
I10/O10O10I10SDA19
I11/O11O11I11PWM14
I12/O12O12I12PWM411

シリアル入出力

TX/RX は、リモコン(UART)の送信と受信に使用します。

ステータスLED出力

アプリケーションID自動設定時のステータス出力を行う際に使用します。

出力が Lo のとき光るようにしてください(吸い込み方式)。

設定入力

モード設定入力

Mxピンを未接続またはGNDへ接続することで、親機、子機、中継機といった動作モードを切り替えることができます。

代替ボーレート設定入力

BPSピンを未接続またはGNDへ接続することで、UART のボーレート(通信速度)を 115200bps 以外の値へ変更できます。

チャネル設定入力

一時的に周波数チャネルを上書きします。

C2C1周波数チャネル
未接続未接続既定値(初期値は16)
未接続GND12
GND未接続21
GNDGND25

リセット入力

RSTGNDとの間にプッシュボタンを接続することで、リセットボタンを実装できます。RSTは内部プルアップされています。

1.3.3.1.2 - リモコンアプリの動作モード

各動作モードの説明
リモコンアプリ(App_IO)には、6つの動作モードがあります。

動作モードの一覧

各モードは、Mx ピンを未接続または GND へ接続することで設定します。

M3M2M1モード機能省電力動作LID初期値
OOO子機:連続入力状態を親機へ送信するほか、常に受信データを待機して出力へ反映します120
OOG親機:連続入力状態を子機へ送信するほか、常に受信データを待機して出力へ反映します0
OGO中継機:連続常に受信データを待機して中継します122
OGG子機:連続0.03秒頻繁に入力状態を親機へ送信するほか、常に受信データを待機して出力へ反映します123
GOO子機:間欠1秒1秒おきに入力状態を親機へ送信するほか、受信を無効化して常に節電モードへ入ります124
GGO(ペアリングモード)詳細
GGG子機:間欠10秒10秒おきに入力状態を親機へ送信するほか、受信を無効化して常に節電モードへ入ります127

O:未接続(OPEN)、G:GNDへ接続

初期状態は子機:連続モードです。

モードによって端末を識別するための論理デバイスID(LID)の初期値は異なります。

親機

連続モード

親機:連続モード

信号入力の変化を検知したとき、また1秒おきに、すべての子機へデータを送信します。

また子機から送信されるデータを常時待機しており、反応がよいものの、常に電力を消費します。

  • 受信:常に待機
  • 送信:入力変化時/1秒おき

子機

連続モード

子機:連続モード

信号入力の変化を検知したとき、また1秒おきに、すべての親機へデータを送信します。

また親機から送信されるデータを常時待機しており、反応がよいものの、常に電力を消費します。

親機との通信のイメージ

親機との通信のイメージ

  • 受信:常に待機
  • 送信:入力変化時/1秒おき

子機:連続0.03秒モード

子機:連続モードの定期送信の間隔は1秒ですが、これを0.03秒に短縮するモードです。

親機から送信されるデータを常時待機しているものの、子機から親機への通信で帯域を占有してしまうため、親機の入力に対する反応は鈍くなってしまいます。常に電力を消費します。

親機との通信のイメージ

親機との通信のイメージ

  • 受信:常に待機
  • 送信:入力変化時/0.03秒おき

間欠モード

子機:間欠1秒モード

信号入力の変化を検知したとき、また1秒おきに節電モードを解除し、すべての親機へデータを送信します。

受信機能を無効とするため、親機の制御を受けることはできません。省電力性能に優れたモードです。

親機との通信のイメージ

親機との通信のイメージ

  • 受信:無効
  • 送信:入力変化時/1秒おき

子機:間欠10秒モード

信号入力の変化を検知したとき、また10秒おきに節電モードを解除し、すべての親機へデータを送信します。

受信機能を無効とするため、親機の制御を受けることはできません。省電力性能に優れたモードです。

親機との通信のイメージ

親機との通信のイメージ

  • 受信:無効
  • 送信:入力変化時/10秒おき

中継機

連続モード

中継機:連続モード

中継機は、受信したパケットを送信します。

親機と子機の間に3つまで設置できますが、中継機を増やすとパケットの数が増大するため、干渉しやすくなることに注意してください。

中継のイメージ

中継のイメージ

  • 受信:常に待機
  • 送信:受信時

1.3.3.1.3 - リモコンアプリの代替ボーレート設定

UART 通信に使用するボーレート設定の変更
リモコンアプリ(App_IO)はデフォルトで 115200 bps のボーレートを UART 通信に使用しますが、これを変更できます。

代替ボーレート設定の有効化

BPS ピンを GND へ接続することで、代替ボーレート設定を有効化できます。

BPS内容ボーレート備考
Oデフォルト115200bps
G上書き設定38400bps変更

O:未接続(OPEN)、G:GNDへ接続

1.3.3.1.4 - リモコンアプリのUART機能

UART機能で利用するデータ形式
リモコンアプリ(App_IO)の UART 機能で使用するデータ形式を解説します。

デジタル入出力

0x81:相手端末からの状態通知

受信した入力信号の状態を出力します。

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信元の論理デバイスID
1uint8コマンド番号0x81のみ
2uint8パケット識別子0x0Fのみ
3uint8プロトコルバージョン0x01のみ
4uint8LQI0-255
5uint32送信元のシリアルID0x8???????
9uint8送信先の論理デバイスID
10uint16タイムスタンプ1秒で64カウント、MSBは内部フラグ
12uint8中継回数
13uint16デジタル信号LSBから順にIxへ対応、0がHigh
15uint16デジタル信号マスクLSBから順にIxへ対応、1なら有効
17uint16デジタル信号フラグLSBから順にIxへ対応、1なら割り込み
19uint8未使用内部管理用
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

出力データの例

:01810F01DB8630000200645F000040004F00400049

0x80:相手端末の出力変更

相手端末の出力信号を制御します。

データ形式

#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID親機0x00,子機0x01-0x64,全子機0x78
1uint8コマンド番号0x80のみ
2uint8書式バージョン0x01のみ
3uint16デジタル信号LSBからOxに対応、0でHigh
5uint16デジタル信号マスクLSBからOxに対応、1で有効
7uint16未使用0
9uint16未使用0
11uint16未使用0
13uint16未使用0
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

UART 入出力

1.3.3.1.5 - リモコンアプリのカスタムデフォルト機能

デフォルトの設定を変更したファームウェアの作成
カスタムデフォルト機能によって、ファームウェアに含まれるデフォルトのパラメータを変更できます。

例えば、ボーレートを 115200bps から 9600bps へ変更したファームウェアを作成しておけば、最初から 9600bps で使用できます。

設定手順

1. 設定を適用

インタラクティブモードの設定を変更し、Sを押下して保存します。

2. 設定内容をダウンロード

xmodem プロトコルのデータをダウンロードできるソフトウェアを用意します。

再度インタラクティブモードへ入った状態(項目を選ぶ前の状態)として、xmodem のダウンロードを要求します。

ダウンロードに成功すると、128バイトのファイルを生成します(xmodem の実装によっては、小さいサイズになることもあります)。

3. カスタムバイナリの作成

ダウンロードしたファイルをファームウェアのバイナリファイルの末尾へ連結し、カスタムバイナリを作成します。

連結には、コマンドラインツールや汎用のファイル連結ツールを使用してください。

実行例

ダウンロードした xmodem のファイルを conf.bin、元のバイナリファイルをApp_IO_BLUE_L1305_V1-3-X.bin、作成するカスタムバイナリをApp_IO_custom_V1-3-X.binとした場合の例を示します。

【Windows】

copy App_IO_BLUE_L1305_V1-3-X.bin App_IO_custom_V1-3-X.bin
type conf.bin >> App_IO_custom_V1-3-X.bin

【macOS / Linux】


cat App_IO_BLUE_L1305_V1-3-X.bin conf.bin > App_IO_custom_V1-3-X.bin

4. カスタムバイナリの書き込み

連結したカスタムバイナリを TWELITE へ書き込みます。

1.3.3.1.6 - リモコンアプリのペアリング機能

アプリケーションIDの自動設定による親機と子機のグループ化
リモコンアプリ(App_IO)には、インタラクティブモードを使わずに親機と子機のグループを作成する機能があります。

設定方法

親機のシリアルIDに基づいたアプリケーションIDを生成し、それを子機へ流し込むことでグループを作成します。LED ピンへ LED を接続すると、設定の成否を確認できます。

接続の様子

接続の様子

  1. 親機と子機の LED へ LED と 電流制限抵抗(680Ω)を接続する(吸い込み)
  2. M1を開放したまま、M2M3GNDへ接続する
  3. 親機の電源を入れて、LED の点滅を確認する
  4. 5秒以内に親機の近くで子機の電源を入れ、LED が消灯することを確認する(失敗すると点灯)

1.3.3.1.7 - インタラクティブモード(リモコンアプリ)

インタラクティブモードによる設定変更
インタラクティブモードでアプリの詳細設定を行うことができます。

ここではリモコンアプリ(App_IO)に固有の機能を説明します。共通機能については、TWELITE APPS マニュアル のトップページを参照してください。

表示例

次のような画面を表示します。

--- CONFIG/APP_IO V1-03-2/SID=0x86300001/LID=0x00 ---
 a: set Application ID (0x67720107)
 i: set Device ID (--)
 c: set Channels (16)
 x: set Tx Power (3)
 t: set mode4 sleep dur (1000ms)
 y: set mode7 sleep dur (0s)
 f: set mode3 fps (16)
 d: set hold mask (000000000000)
 D: set hold dur (1000ms)
 o: set Option Bits (0x00000000)
 b: set UART baud (38400)
 p: set UART parity (N)
 C: set crypt mode (0)
 K: set crypt key []
---
 S: save Configuration
 R: reset to Defaults

コマンド

設定項目初期値備考
aアプリケーションID0x6772010732bit
i論理デバイスID120親機121,子機1-100,IDなし子機120,未設定0
c周波数チャネル1611-26
x再送回数と送信出力3
再送回数01-9回、0はデフォルト:2回
送信出力30-3
t子機間欠1秒モードの間隔1000100-64000ms
y子機間欠10秒モードの間隔02-10000s, 無効0
f子機連続0.03秒モードのサイクル324/8/16/32回毎秒
dホールド/長押しモードの対象000000000000右からI1-I2, 有効1
Dホールド/長押しモードの時間100020-64000ms
oオプションビット0x00000000その他の詳細設定
bUART代替ボーレート38400BPSピンで有効化
pUARTパリティNストップビットは1固定
C暗号化0無効0,AES128bit1
K暗号鍵-最大16文字

各コマンドの詳細を次に示します。

a:アプリケーションID

通信を行う端末はすべて同一の値とします。論理的にネットワークを分離します。

i:論理デバイスID

複数の子機を識別する必要がある場合に設定します。

識別の必要がない、できない場合は120としてください。識別の必要がある場合は、子機は1-100の任意の値に、親機は0あるいは121としてください。

c:周波数チャネル

通信を行う端末はすべて同一の値とします。物理的にネットワークを分離します。

x:送信出力と再送回数

電波の送信出力と、透過モードおよびヘッダ付き透過モードにおいてパケットを追加で送信する回数を指定します。

t:子機間欠1秒モードの間隔

子機間欠1秒モードの間欠時間を1秒から他の値へ上書きします。単位はミリ秒です。

0を設定した場合は、タイマによる定期的な起床を無効化します。このときIxの立ち下がりエッジにより起床しますが、立ち上がりエッジでは起床しません。

y:子機間欠10秒モードの間隔

子機間欠10秒モードの間欠時間を10秒から他の値へ上書きします。単位は秒です。

0を設定した場合は、タイマによる定期的な起床を無効化します。このときIxの立ち下がりエッジにより起床しますが、立ち上がりエッジでは起床しません。

f:子機連続0.03秒モードのサイクル

毎秒の送信リクエストの数を32回から4/8/16回へ上書きします。再送回数は含みません。

d:ホールド/長押しモードの対象

初期状態ではホールドモードの、オプションビット0x00000100を有効としたときはリモコン長押しモードの対象とするポートを選択します。

設定値には、対象とするIxまたはOxのビットマスクを指定します。値は12文字までの0または1で構成します。LSBから順に I1 I2I12 と並びます。

例えば 000000001010 を指定すると、I2I4にホールドモードを適用できます。任意のピンを対象とした場合、対象としていないポートからは50msのパルスを出力します。

ホールドモード

ホールドモードの場合、対象としたポートは次のように振るまいます。

入力(送信)側:Ix
  • すべての入力がLoからHiへ戻ったあと、設定した時間にわたり連続して送信します(ホールド解除のため)
出力(受信)側:Ox
  • 受信した入力のうち、Loであるものに対しては、設定した時間にわたり出力をLoのままホールドします
  • いずれかの出力のホールド中に再び入力がLoの信号を受信した際は、ホールドする期間を延長します

リモコン長押しモード

リモコン長押しモードの場合、対象としたポートは次のように振るまいます。

入力(送信)側:Ix
  • いずれかの入力がLoである間、連続して送信します
  • すべての入力がLoからHiへ戻ったあと、設定した時間にわたり連続して送信します
出力(受信)側:Ox
  • いずれかの入力がLoであるパケットが断絶してから設定した時間が経過すると、出力をHiへ戻します

D:ホールド/長押しモードの時間

初期状態ではホールドモードを、オプションビット0x00000100を有効としたときはリモコン長押しモードのホールド時間や送信間隔といった値を指定することができます。

20-64000 ms の値を指定できます。

ホールドモード

ホールドモードの場合、設定した時間は次のように適用されます。

入力(送信)側:Ix

連続モードでは、すべての入力がLoからHiへ戻ったあとに連続して送信する時間を指定します。

間欠モードでは、いずれかの入力がLoである間の送信間隔を指定します。

出力(受信)側:Ox

出力を維持する時間を指定します。

リモコン長押しモード

リモコン長押しモードの場合、設定した時間は次のように適用されます。

入力(送信)側:Ix

すべての入力がLoからHiへ戻ったあとに連続して送信する時間を指定します。

出力(受信)側:Ox

いずれかの入力がLoのパケットが断絶してからすべての出力をHiへ戻すまでの時間を指定します。

o:オプションビット

32bit の数値を指定します。各ビットに紐付いた設定を有効化できます。

対象ビット設定項目初期送信受信連続間欠
0x00000001低レイテンシモード0️⃣
0x00000002低レイテンシモード(スリープ割り込み)0️⃣
0x00000010ACKつき送信の有効化0️⃣
0x00000020定期送信の無効化0️⃣
0x00000100リモコン長押しモードの有効化0️⃣
0x00000200C1/C2チャネル切り替えの無効化0️⃣
0x00000400Ixの入力を反転0️⃣
0x00000800Ixの内部プルアップを停止0️⃣
0x00001000子機:8入力4出力/親機:8出力4入力0️⃣
0x00002000子機:6入力6出力/親機:6出力6入力0️⃣
0x00003000子機:0入力12出力/親機:0出力12入力0️⃣
0x00010000子機の受信を強制的に有効化0️⃣
0x00020000入出力変化時のUART出力の停止0️⃣
0x00040000C2のウォッチドッグ出力を有効化0️⃣
0x00400000Oxの出力を反転0️⃣

b:UART代替ボーレート

BPSピンをGNDへ接続して起動した場合に選択される代替ボーレートを38400bpsから上書きします。

値は9600/19200/38400/57600/115200/230400から選択できます。他の値を指定すると、誤差が生じる可能性があります。

B:UARTパリティ

N: 無し、O: Odd(奇数)、E: Even(偶数)のいずれかを設定します。ストップビットは1のみ、ハードウェアフローは設定不可です。

C:暗号化

暗号化機能の有無を指定します。

AES128bitの暗号化を有効とするには、1を指定してください。

K:暗号鍵

暗号化に用いる鍵を入力します。16文字のテキストを指定します(バイナリ列は指定できません)。

オプションビットの詳細

オプションビットの値の各ビットに紐付いた設定を解説します。

0x00000001:低レイテンシモード

低レイテンシモードで入力状態の監視と無線送信を行います。

ボタン監視の時間を短縮し、送信遅延を最小にします。また、連続モードでは入力の判定に割り込みを使用しますが、チャタリングの影響を受けやすくなります。間欠モードでは、入力状態の確定までの時間を短縮します。

子機のみ有効です。

0x00000002:低レイテンシモード(スリープ割り込み)

間欠モード時にスリープ復帰要因がIxのHiからLoへの割り込みであったとき、割り込み要因のポート情報を速やかに送信します。

特に子機間欠10秒モードにおいて、定期起床を無効としたとき、ボタンの押し下げを検出するためにホールドモードと合わせて利用します。

子機のみ有効です。

0x00000010:ACKつき送信の有効化

子機から ACK を有効とした通信を行います。親機が ACK を返した時点で送信は終了します。

複数台の親機やすべての中継機は利用できませんが、親機と安定して通信できる環境では効率のよい通信を実現できます。

子機間欠10秒モードの場合、BPSピンが出力ピンとして設定されるため、子機側のボーレートの上書きはできません。

0x00000020:定期送信の無効化

子機連続モードにおける1秒おきの定期送信を無効化します。

0x00000100:リモコン長押しモードの有効化

ホールドモードの代わりに、リモコン長押しモードを適用します。

0x00000200C1/C2チャネル切り替えの無効化

C1/C2ピンによるチャネル切り替え機能を停止します。

0x00000400Ixの入力を反転

入力が Hi のとき1を、Lo のとき0を送信します。

0x00000800Ixの内部プルアップを停止

Ixの内部プルアップ(約50kΩ)をすべて停止します。

0x00001000:子機:8入力4出力/親機:8出力4入力

入出力ポートの割り当てを「子機:12入力0出力/親機:12出力0入力」から変更します。間欠モードでは間欠受信を行います。

0x00002000:子機:6入力6出力/親機:6出力6入力

入出力ポートの割り当てを「子機:12入力0出力/親機:12出力0入力」から変更します。間欠モードでは間欠受信を行います。

0x00003000:子機:0入力12出力/親機:0出力12入力

入出力ポートの割り当てを「子機:12入力0出力/親機:12出力0入力」から変更します。間欠モードでは間欠受信を行います。

0x00010000:子機の受信を強制的に有効化

連続モードのとき、出力ポートの有無に関わらず強制的に受信を有効化します。

他の端末から受信したデータのUART出力を実現できます。

0x00020000:入出力変化時のUART出力の停止

入出力変化時のメッセージ出力を停止します

0x00040000C2のウォッチドッグ出力を有効化

C2ポートからウォッチドッグ出力を行います。

アプリケーションループでIOを制御し、約32Hzの矩形波を出力します。

モジュールのハングアップに備えて、自動復帰のために外部のリセット回路を接続し、モジュールを強制的にリセットする際に使用します。

0x00400000Oxの出力を反転

受信した入力ポートの状態が 0 のとき Lo を、1 のとき Hi を出力します。

1.3.4 - シリアル通信アプリ マニュアル

シリアル通信の無線化
シリアル通信(UART)の無線伝送に特化したファームウェアです。超簡単!標準アプリと比較して豊富な機能を備えています。

1.3.4.1 - シリアル通信アプリ マニュアル

最新版

ダウンロード

シリアル通信アプリ(App_Uart)を導入するには TWELITE STAGE SDK をインストールして、TWELITE STAGE アプリを使って書き換えてください。

1.3.4.1.1 - シリアル通信アプリのピン配置

シリアル通信アプリが使用するピンの機能

TWELITE / TWELITE DIP

シリアル通信アプリが使用するピンの機能を、下図の超簡単!標準アプリのピン名を使って表します。

超簡単!標準アプリのピン配置表

超簡単!標準アプリのピン配置表

シリアル通信超簡単!標準機能
VCC GNDVCC GND電源入力
TX RXTX RXシリアル入出力
TX_SUB RX_SUBSCL SDAシリアル副入出力
RTSPWM1シリアル入力許可
M1M1親機/子機の選択
M2M2子機へ中継機能を付与
M3M3スリープ
EX1AI2動作モードの上書き
BPSBPS代替ボーレート設定の有効化
RSTRSTリセット入力

電源入力

VCC/GND には、3.3V(2.0-3.6V)の電源を接続します。

シリアル入出力

TX/RX は、シリアル通信(UART)の送信と受信に使用します。

シリアル副入出力

TX_SUBSCL)/RX_SUBSDA)は、シリアル入出力の副ポートとして利用できます。

シリアル入力許可

RTSPWM1)が Low レベルのときは、RXへのシリアル入力を受け付けていることを示します。

親機/子機の選択

M1GNDへ接続すると親機、開放またはVCCへ接続すると子機として使用できます。

子機へ中継機能を付与

M2を子機設定のときにGNDへ接続することで、中継機能を付与できます。

スリープ

M3GNDへ接続すると、本体をスリープさせることができます。

動作モードの上書き

EX1 を起動時に GND へ接続しておくことで、動作モードを書式モード(バイナリ)へ上書きできます。

代替ボーレート設定の有効化

BPSGNDへ接続することで、インタラクティブモードで指定した代替ボーレート設定を有効化できます。

リセット入力

RSTGNDとの間にプッシュボタンを接続することで、リセットボタンを実装できます。RSTは内部プルアップされています。

TWELITE UART

シリアル通信アプリが使用するピンの機能を、基板に記載された7Pインタフェース(下図の②)のピン名を使って表します。

基板アンテナタイプ

基板アンテナタイプ

同軸コネクタタイプ

同軸コネクタタイプ

シルク機能
VCC GND電源入力
TXD RXDシリアル入出力
SET動作モードの上書き
RSTリセット入力

電源入力

VCC/GND には、3.3V(2.0-3.6V)の電源を接続します。

シリアル入出力

TX/RX は、シリアル通信(UART)の送信と受信に使用します。

動作モードの上書き

SET を起動時に GND へ接続することで、動作モードを書式モード(アスキー)へ上書きできます。

リセット入力

RSTGNDとの間にプッシュボタンを接続することで、リセットボタンを実装できます。RSTは内部プルアップされています。

1.3.4.1.2 - シリアル通信アプリの通信モード

各通信モードの説明
シリアル通信アプリ(App_Uart)には、5つの通信モードがあります。

通信モードの一覧

各モードは、インタラクティブモードによって切り替えます(一部のモードはピン入力にて設定可能)。

IDモード
A書式モード(アスキー)
B書式モード(バイナリ)
Cチャットモード
D透過モード
Eヘッダ付き透過モード

初期状態はヘッダ付き透過モードです。

A:書式モード(アスキー)

送信側の端末へ特定の書式に従ったデータを入力すると、受信側の端末も特定の書式に従ったデータを出力します。

16進数で表すデータはアスキー文字列で表現します。

送信側の入力受信側の出力
簡易形式/拡張形式のデータ簡易形式/拡張形式のデータ

TWELITE UART では、SET ピンを GND へ接続して起動すると本モードが有効となります。

データを表現する形式は2種類あります。

  • 簡易形式:論理デバイスIDだけを使用。超簡単!標準アプリのUART伝送機能と互換性あり
  • 拡張形式:論理デバイスIDに加えて、シリアルIDや再送回数などの送信オプションを使用できる

例えば、5バイトのバイナリデータ 0x48 0x45 0x4C 0x4C 0x4F は、簡易形式を使って次のように送信できます。

【送信側】

:000148454C4C4F8B  <- 入力
:DBA1800103  <- 出力

【受信側】

:780148454C4C4F13  <- 出力

書式モードでは、アプリケーションIDなどの設定をインタラクティブモードだけでなく UART によるコマンド(アスキー形式)によって動的に適用できます。

B:書式モード(バイナリ)

送信側の端末へ特定の書式に従ったデータを入力すると、受信側の端末も特定の書式に従ったデータを出力します。

16進数で表すデータはそのままバイナリ形式で表現します。

送信側の入力受信側の出力
簡易形式/拡張形式のデータ簡易形式/拡張形式のデータ

TWELITE / TWELITE DIP では、EX1 ピンを GND へ接続して起動すると本モードが有効となります。

書式モード(アスキー)と同様に、データを表現する形式は2種類あります。

例えば、5バイトのバイナリデータ 0x48 0x45 0x4C 0x4C 0x4F は、簡易形式を使って次のように送信できます。

【送信側】

0xA5 0x5A 0x00 0x07 0x00 0x01 0x48 0x45 0x4C 0x4C 0x4F 0x43 0x04    <- 入力
0xA5 0x5A 0x00 0x04 0xDB 0xA1 0x80 0x01 0xFB 0x04  <- 出力

【受信側】

0xA5 0x5A 0x00 0x07 0x78 0x01 0x48 0x45 0x4C 0x4C 0x4F 0x3B 0x04  <- 出力

書式モードでは、アプリケーションIDなどの設定をインタラクティブモードだけでなく UART によるコマンド(バイナリ形式)によって動的に適用できます。

C:チャットモード

テキストチャットを実現します。

送信側の入力受信側の出力
任意の文字列補助情報+任意の文字列

プロンプトの表示とエコーバック(入力した文字の出力)を行います。すべての端末は子機として、同報通信を行います。

例えば、ある端末から他の端末へ Hello という文字列を送信する場合は、次のように振る舞います。

【送信側】

810A4778:0> Hello  <- 入力
810A4778:1>  <- 出力

【受信側】

[810A4778:0] Hello  <- 出力
82018CA0:0>  <- 出力

上記の例ではプロンプトにシリアルIDを表示していますが、任意のハンドル名を使用することもできます。

D:透過モード

送信側の端末へ任意のデータを入力すると、受信側の端末は受信したデータをそのまま出力します。

送信側の入力受信側の出力
任意のデータ任意のデータ

書式を必要としないため、既存の UART 通信を簡単に無線化できます。

一方で、データの区切りがあいまいになってしまうほか、受信側の出力から送信元を判別できないといった欠点があります。

初期状態では、送信側へ入力されたデータをCRLFで区切り、CRLF よりも前のデータを送信します。

例えば、送信側の端末へ Hello<Enter> と入力すると、受信側の端末はそのまま Hello を出力します。

【送信側】

Hello  <- 入力

【受信側】

Hello  <- 出力

E:ヘッダ付き透過モード

送信側の端末へ任意のデータを入力すると、受信側の端末は受信した内容に特定の書式で補助情報を付加したデータを出力します。

送信側の入力受信側の出力
任意のデータ任意のデータ+補助情報

初期状態では、送信側へ入力されたデータをCRLFで区切り、CRLF よりも前のデータを送信します。

例えば、送信側の端末へ Hello<Enter> と入力すると、受信側の端末は補助情報を含んだ書式で Hello を出力します。送信側の端末も送信完了といったメッセージを伝える書式を出力します。

【送信側】

Hello  <- 入力
;U;00004;219;0x820163B2;000;000;0,1,Hel...;6E;  <- 出力

【受信側】

;U;00003;000;0x820163B2;255;000;Hello;42;  <- 出力

受信側が出力する補助情報は、送信元のアドレスや受信時の電波強度、チェックサム等を含みます。補助情報の書式はカスタマイズできます。

1.3.4.1.2.1 - シリアル通信アプリの書式モード(アスキー形式)

送受信双方の出力にヘッダを付加するモード(アスキー形式)
書式モードは、送受信双方の出力にヘッダを付加します。アスキー形式では、データを16進数の文字列で表します。
書式モードによるネットワークの構成例

概要

送信側の端末へ特定の書式に従ったデータを入力すると、受信側の端末も特定の書式に従ったデータを出力します。

データは16進数のアスキー文字列で表現します。

送信側の入力受信側の出力
簡易形式/拡張形式のデータ簡易形式/拡張形式のデータ
  • TWELITE UART では、SET ピンを GND へ接続して起動すると書式モード(アスキー)が有効となります。
  • TWELITE / TWELITE DIP では、EX1 ピンを GND へ接続して起動すると書式モード(バイナリ)が有効となります。

扱うことのできる書式の形式は2種類あります。

  • 簡易形式:論理デバイスIDだけを使用する。超簡単!標準アプリのUART伝送機能と互換性あり
  • 拡張形式:論理デバイスIDに加えて、シリアルIDや再送回数などの送信オプションを使用できる

例えば、5バイトのバイナリデータ 0x48 0x45 0x4C 0x4C 0x4F は、簡易形式を使って次のように送信できます。

【送信側】

:000148454C4C4F8B  <- 入力
:DBA1800103  <- 出力

【受信側】

:780148454C4C4F13  <- 出力

基本の書式

基本形式や拡張形式で表現したデータ列を送信するときは、アスキー文字列(0-9,A-F)へ変換します。

書式は超簡単!標準アプリ(App_Twelite)や親機・中継機アプリ(App_Wings)の親機の出力と同様に、:で始まりCRLFで終わります。

ヘッダペイロードチェックサムフッタ
:00-FFの繰り返しペイロードのLRC8CRLF
  • すべて ASCII 文字
  • 先頭は : (0x3A)
  • チェックサムはペイロードの合計の2の補数
  • 末端は CRLF (\r\n/0x0D 0x0A)
  • ビッグエンディアン

例えば、バイナリデータ 0x00 0x11 0x22 0x33 0xAA 0xBB 0xCC は次のように表現します。

:00112233AABBCC69<CR><LF>

親機と子機の区別

書式モードは、親機と子機を区別します。

親子間では、アプリケーションIDと周波数チャネルを合わせる必要があります。

送信元の判別

書式モードでは、受信したデータから送信元を判別できます。

簡易形式の書式では論理デバイスIDを、拡張形式の書式では論理デバイスIDに加えて拡張アドレスを利用します。

簡易形式の書式

書式モードの簡易形式を利用する場合は、次の書式に従います。

送信側の入力

#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID親機0x00,子機0x01-0x64,全子機0x78
1uint8コマンド番号0x80未満の任意の値
2[uint8]任意のデータ長さ\(N\)のバイト列(\(N\leqq80\)を推奨)
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

受信側の出力

#データ内容備考
charヘッダ:のみ
0uint8送信元の論理デバイスID親機0x00,子機0x01-0x64,未設定子機0x78
1uint8コマンド番号送信側で指定した0x80未満の値
2[uint8]任意のデータ長さ\(N\)のバイト列
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

送信側の出力(応答メッセージ)

#データ内容備考
charヘッダ:のみ
0uint8送信元の論理デバイスID0xDBのみ:自身を示す
1uint8コマンド番号0xA1のみ
2uint8応答ID128-255(0x80-0xFF)の範囲で続き番号を示す
3uint8処理結果成功1,失敗0
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

使用例

親機から全子機に対してバイト列 0x11 0x22 0x33 0xAA 0xBB 0xCC を送信する例を示します。

【送信側:親機】

:7801112233AABBCCF0<CR><LF>  <- 入力
:DBA1800103<CR><LF>  <- 出力

末尾の0xF0はチェックサム:0x78から0xCCまでの合計の2の補数のLSBから8ビット。

【受信側:全子機】

:0001112233AABBCC68<CR><LF>  <- 出力

末尾の0x68はチェックサム:0x00から0xCCまでの合計の2の補数のLSBから8ビット。

拡張形式の書式

書式モードの拡張形式を利用する場合は、次の書式に従います。

送信側の入力

送信先の指定に論理デバイスIDを使用する場合

#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID親機0x00,子機0x01-0x64,全子機0x78
1uint8コマンド番号0xA0のみ
2uint8応答ID任意の値
3[uint8]オプション長さ\(N\)のオプション列
3+\(N\)[uint8]任意のデータ長さ\(M\)のバイト列(\(M\leqq80\)を推奨)
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

送信先の指定に拡張アドレスを使用する場合

#データ内容備考
charヘッダ:のみ
0uint8拡張アドレスの指定0x80のみ
1uint8コマンド番号0xA0のみ
2uint8応答ID任意の値
3uint32送信先の拡張アドレスシリアルIDの先頭へ0x8を加えた値
7[uint8]オプション長さ\(N\)のオプション列
7+\(N\)[uint8]任意のデータ長さ\(M\)のバイト列(\(M\leqq80\)を推奨)
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

オプション列の詳細

拡張形式では、オプション列を指定することで細かな設定を行うことができます。

オプション列は、オプションのIDと引数の繰り返しで表現します。終端は 0xFF とします。

ID引数初期値内容
0x01なし無効MAC ACKの有効化
0x02uint80x00アプリケーション再送の有効化
0x03uint160x0000初回送信の遅延の最小値
0x04uint160x0000初回送信の遅延の最大値
0x05uint1610アプリケーション再送の間隔
0x06なし無効平行要求の許可
0x07なし無効応答メッセージの無効化
0x08なし無効送信後スリープ
0x01:MAC ACKの有効化

MAC層のACK(確認応答)を有効化します。

頻繁にデータを送信する場合には適しませんが、信頼性を向上できる場合があります。

0x02:アプリケーション再送の有効化

MAC ACK を使用するときは、0x00-0x0Fを指定します。送信に成功するまで、それぞれ0-16回の再送を行います。

MAC ACK を使用しないときは、0x81-0x8Fを指定します。必ず1-16回の再送を行います。

応答メッセージは、すべての再送が終了してから出力します。

0x03:初回送信の遅延の最小値

初回送信までの遅延の最小値をミリ秒で指定できます。

0x04:初回送信の遅延の最大値

初回送信までの遅延の最大値をミリ秒で指定できます。

0x05:アプリケーション再送の間隔

アプリケーション再送を有効化した際の再送間隔をミリ秒で指定します。

0x06:平行要求の許可

平行要求を許可します。

平行要求を許可すると、要求を完了するまでブロックせず、次の要求処理を受け付けることができるようになります。

例えば 0.5 秒の遅延を設定した要求を3回連続して入力した場合、初期状態では 0.5 秒後、1.0秒後、1.5秒後と順番に処理します。ところが、平行要求を許可した場合は、0.5秒後に順不同で送信要求を処理します。なおパケット分割を必要とする場合は使用できません。

0x07:応答メッセージの無効化

送信側へデータを入力した際に出力される応答メッセージを無効とします。

0x08:送信後スリープ

送信後、速やかに本体をスリープさせます。

RXが立ち上がりエッジを検知すると、スリープから復帰します。何か1バイトのデータを入力してください。

スリープ復帰後、UART の初期化が終わると入力を受け付けます。

受信側の出力

#データ内容備考
charヘッダ:のみ
0uint8送信元の論理デバイスID親機0x00,子機0x01-0x64,未設定子機0x78
1uint8コマンド番号0xA0のみ
2uint8応答ID送信側で指定した値
3uint32送信元の拡張アドレスシリアルIDの先頭へ0x8を加えた値
7uint32送信先の拡張アドレス論理デバイスID使用時は0xFFFFFFFF
11uint8LQI受信時の電波通信品質
12uint16続くバイト列の長さバイト数\(M\)を表す
14[uint8]任意のデータ長さ\(M\)のバイト列
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

送信側の出力(応答メッセージ)

#データ内容備考
charヘッダ:のみ
0uint8送信元の論理デバイスID0xDBのみ:自身を示す
1uint8コマンド番号0xA1のみ
2uint8応答ID入力時に指定した値
3uint8処理結果成功1,失敗0
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

使用例

親機から子機に対してバイト列 0x11 0x22 0x33 0xAA 0xBB 0xCC を送信する例を示します。

論理デバイスIDを指定する例

親機から論理デバイスID0x42の子機へ送信する例を示します。

  • 応答IDは0x01
  • オプションなし
  • 親機の拡張アドレスは0x81000000(シリアルID0x1000000

【送信側:親機】

:42A001FF112233AABBCC87<CR><LF>  <- 入力
:DBA1010182<CR><LF>  <- 出力

末尾の0x87はチェックサム:0x42から0xCCまでの合計の2の補数のLSBから8ビット。

【受信側:子機】

:00A00181000000FFFFFFFFC80006112233AABBCC7D<CR><LF>  <- 出力

末尾の0x7Dはチェックサム:最初の0x00から0xCCまでの合計の2の補数のLSBから8ビット。

拡張アドレスを指定する例

親機から拡張アドレス0x81000001(シリアルID0x1000001)の子機へ送信する例を示します。

  • 応答IDは0x01
  • オプションなし
  • 親機の拡張アドレスは0x81000000(シリアルID0x1000000

【送信側:親機】

:80A00181000001FF112233AABBCCC7<CR><LF>  <- 入力
:DBA1010182<CR><LF>  <- 出力

末尾の0xC7はチェックサム:0x80から0xCCまでの合計の2の補数のLSBから8ビット。

【受信側:子機】

:00A0018100000081000001C80006112233AABBCCF7<CR><LF>  <- 出力

末尾の0xF7はチェックサム:最初の0x00から0xCCまでの合計の2の補数のLSBから8ビット。

MAC ACKを使用する例

親機から論理デバイスID0x42の子機へ MAC ACK を使用して送信する例を示します。

  • 応答IDは0x01
  • オプションは0x01:MAC ACKの有効化を指定
  • 親機の拡張アドレスは0x81000000(シリアルID0x1000000

【送信側:親機】

:42A00101FF112233AABBCC86<CR><LF>  <- 入力
:DBA1010182<CR><LF>  <- 出力

末尾の0x86はチェックサム:0x42から0xCCまでの合計の2の補数のLSBから8ビット。

【受信側:子機】

:00A00181000000FFFFFFFFC80006112233AABBCC7D<CR><LF>  <- 出力

末尾の0x7Dはチェックサム:0x00から0xCCまでの合計の2の補数のLSBから8ビット。

遅延を設ける例

親機から論理デバイスID0x42の子機へ 768ms の遅延を設けて送信する例を示します。

【送信側:親機】

:42A001030300FF112233AABBCC81<CR><LF>  <- 入力
:DBA1010182<CR><LF>  <- 出力

末尾の0x81はチェックサム:0x42から0xCCまでの合計の2の補数のLSBから8ビット。

【受信側:子機】

:00A00181000000FFFFFFFFC80006112233AABBCC7D<CR><LF>  <- 出力

末尾の0x7Dはチェックサム:0x00から0xCCまでの合計の2の補数のLSBから8ビット。

0xDB コマンド

インタラクティブモードの設定を行う代わりに、UART から 0xDB コマンドを入力することでモジュールの操作や設定を行うことができます。

1.3.4.1.2.1.1 - シリアル通信アプリ 書式モード(アスキー)の 0xDB コマンド

書式モード(アスキー)におけるインタラクティブモードを使用しない設定機能
書式モードでは、インタラクティブモードの代わりに0xDBコマンドを使うことで、UART接続されたデバイスから動的に設定を行えます。

入力の書式

#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID自身を示す0xDBのみ
1uint8コマンド番号後述の値から選択
2[uint8]パラメータ設定値を示す長さ\(N\)のバイト列(オプション)
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

コマンド番号の一覧

機能
0xF0ACKの有効化
0xF1端末情報の取得
0xF2端末設定の適用
0xF3端末設定の取得
0xF8端末の制御
0xFD端末設定の消去
0xFE端末設定の保存
0xFF端末のリセット

0xF0:ACKの有効化

ACK 応答の要求を行います。

パラメータはありません。

応答の書式

#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID0xDBのみ
1uint8コマンド番号0xF0のみ
2uint8データ0x01のみ
uint8チェックサム0x34:LRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

0xF1:端末情報の取得

アドレス等の情報を表示します。起動時にも出力されます。

パラメータはありません。

応答の書式

#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID0xDBのみ
1uint8コマンド番号0xF1のみ
2uint32アプリケーションID
6uint32バージョン番号1.4.7なら00010407
10uint8論理デバイスID
11uint32シリアルID
15uint8サイレントモードの状態有効1, 無効0
16uint8ネットワークの状態UP1, DOWN0
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

0xF2:端末設定の適用

設定を適用します。

応答の書式

成功した場合
#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID0xDBのみ
1uint8コマンド番号0xF3のみ
2[uint8]設定内容長さ\(N\)の識別子とデータの繰り返し
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')
失敗した場合
#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID0xDBのみ
1uint8コマンド番号0xF3のみ
2uint8エラー0xFFのみ
uint8チェックサム0x33:LRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

0xF3:端末設定の取得

設定を取得します。

応答の書式

#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID0xDBのみ
1uint8コマンド番号0xF3のみ
2[uint8]設定内容識別子とデータの繰り返し
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

0xF8:端末の制御

起動時にサイレントモードを有効としていた場合に、これを解除します。

応答の書式

#データ内容備考
charヘッダ:のみ
0uint8送信先の論理デバイスID0xDBのみ
1uint8コマンド番号0xF8のみ
2uint8データ0x11のみ
3uint8状態解除済み1, 未解除0
uint8チェックサムLRC8
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')

0xFD:端末設定の消去

設定を初期化し、本体をリセットします。

パラメータおよび応答はありません。

0xFE:端末設定の保存

適用した設定を保存し、本体をリセットします。

パラメータおよび応答はありません。

0xFF:端末のリセット

適用した設定を破棄し、本体をリセットします。

パラメータおよび応答はありません。

パラメータの一覧(0xF2/0xF3

0xF2:端末設定の適用 および 0xF3:端末設定の取得 のパラメータは、識別子とデータ(ビッグエンディアン)の繰り返しで表現します。

識別子データ内容
0x00uint32アプリケーションID
0x01uint32周波数チャネルマスク
0x02uint16再送回数と出力
0x03uint8論理デバイスID
0x04uint8役割
0x05uint8中継レイヤ
0x06uint8通信モード
0x07uint32ボーレート
0x08uint8パリティ
0x09uint8暗号化機能
0x0A[uint8]暗号化キー
0x0Cuint16区切り文字
0xFFuint8エラー

0x00:アプリケーションID

アプリケーションIDを指定します。

0x01:周波数チャネルマスク

周波数チャネルのビットマスクを指定します。

使用するチャネルのビットを立てます。例えば、11チャネルを使う場合は1<<11です。

0x02:再送回数と出力

電波の送信出力と、透過モードおよびヘッダ付き透過モードにおいてパケットを追加で送信する回数を指定します。

下位の1バイトのみを使用します。そのうち上位の4ビットが再送回数(0-9)、下位の4ビットが送信出力(0-3)です。例えば、8回再送/出力3 であれば 0x0083です。

0x03:論理デバイスID

論理デバイスIDを指定します。

0x04:役割

子機のみ有効です。以下の値を指定します。通常はネットワーク層を利用しない配送方式を選択してください。

ネットワーク層を利用しない配送方式

  • 0:通常の指定(親機または子機)
  • 1-3:中継子機(論理デバイスIDを1-100 または 120とします)1-3の数値は最大中継段数を指します。最大中継段数まで再送を繰り返す方式のため、中継機の配置や数によっては重複したパケットを中継します。

ネットワーク層を利用する配送方式

  • 11:親機
  • 12:中継機
  • 13:子機

0x05:中継レイヤ

中継レイヤの番号です。中継機は中継レイヤ数の上位(より小さい値)の中継機・親機への接続を試みます。役割12としているときにだけ有効です。

0x06:通信モード

  • 0:透過モード
  • 1:書式モード(アスキー)
  • 2:書式モード(バイナリ)
  • 3:チャットモード
  • 4:ヘッダ付き透過モード

0x07:ボーレート

UART ボーレートを指定します。

0x08:パリティ

以下の設定の組み合わせにおいて、設定値の総和を指定します。

  • Bit
    • 0:8Bit
    • 8:7Bit
  • Parity
    • 0:None
    • 1:Odd
    • 2:Even
  • Stop
    • 0:STOP 1
    • 4:STOP 2

例えば、7-E-1 なら 8+2+0=10(0xA) を指定します。

0x09:暗号化機能

暗号化機能の有無を指定します。

  • 0:無効
  • 1:AES128bit の暗号化を有効

0x0A:暗号化キー

16バイトの暗号化キーを指定します。

インタラクティブモードでは設定できないバイナリ列を格納できます。この場合、インタラクティブモードの表示が崩れる場合があります。

0x0C:区切り文字

区切り文字列の指定を行います(0x00-0xFF)。

サイレントモード

設定方法

インタラクティブモードで以下の設定を行います。

  • r: Role80 を足しておく。例えば、通常の親機や子機なら80とする。
  • m: UART mode を書式モード(A/B)としておく。

動作確認

起動直後に出力される DB F1 応答の内容を確認します。

解除方法

DB F8 要求を行います(アスキー形式::DBF8101D<CR><LF>)。

注意点

  • サイレントモードの再設定はできません。
  • サイレントモードが有効のときに送信コマンドを入力した場合の動作は未定義です。

1.3.4.1.2.2 - シリアル通信アプリの書式モード(バイナリ形式)

送受信双方の出力にヘッダを付加するモード(バイナリ形式)
書式モードは、送受信双方の出力にヘッダを付加します。バイナリ形式では、データをそのまま表現します。
書式モードによるネットワークの構成例

概要

送信側の端末へ特定の書式に従ったデータを入力すると、受信側の端末も特定の書式に従ったデータを出力します。

16進数で表すデータは、バイナリデータのまま表現します。

送信側の入力受信側の出力
簡易形式/拡張形式のデータ簡易形式/拡張形式のデータ
  • TWELITE UART では、SET ピンを GND へ接続して起動すると書式モード(アスキー)が有効となります。
  • TWELITE / TWELITE DIP では、EX1 ピンを GND へ接続して起動すると書式モード(バイナリ)が有効となります。

扱うことのできる書式の形式は2種類あります。

  • 簡易形式:論理デバイスIDだけを使用。超簡単!標準アプリのUART伝送機能と互換性あり
  • 拡張形式:論理デバイスIDに加えて、シリアルIDや再送回数などの送信オプションを使用できる

例えば、5バイトのバイナリデータ 0x48 0x45 0x4C 0x4C 0x4F は、簡易形式を使って次のように送信できます。

【送信側】

A5 5A 80 07 00 01 48 45 4C 4C 4F 43 04    <- 入力
A5 5A 80 04 DB A1 80 01 FB 04  <- 出力

【受信側】

A5 5A 80 07 78 01 48 45 4C 4C 4F 3B 04  <- 出力

基本の書式

基本形式や拡張形式で表現したデータ列を送信するときは、バイナリデータのまま扱います。

ヘッダ長さペイロードチェックサムフッタ
A5 5Aペイロード長00-FFの繰り返しペイロードのXOREOT
  • すべてバイナリ
  • 先頭は A5 5A の2バイト
  • ペイロード長はバイト数を2バイトで表現、0x8000とORをとる
  • チェックサムはペイロードのXOR
  • 末端は EOT を表す 0x04(入力時は省略可)
  • ビッグエンディアン

例えば、バイナリデータ 00 11 22 33 AA BB CC は次のように表現します。

A5 5A 80 07 00 11 22 33 AA BB CC DD 04

デバッグが面倒ですが、マイコン間の通信では高い効率を誇ります。

親機と子機の区別

書式モードは、親機と子機を区別します。

親子間では、アプリケーションIDと周波数チャネルを合わせる必要があります。

送信元の判別

書式モードでは、受信したデータから送信元を判別できます。

簡易形式の書式では論理デバイスIDを、拡張形式の書式では論理デバイスIDに加えて拡張アドレスを利用します。

簡易形式の書式

書式モードの簡易形式を利用する場合は、次の書式に従います。

送信側の入力

#データ内容備考
uint8ヘッダ0xA5のみ
uint8ヘッダ0x5Aのみ
uint16データ長\(N\)+2
0uint8送信先の論理デバイスID親機0x00,子機0x01-0x64,全子機0x78
1uint8コマンド番号0x80未満の任意の値
2[uint8]任意のデータ長さ\(N\)のバイト列(\(N\leqq80\)を推奨)
uint8チェックサムXOR
uint8フッタEOT (0x04)

受信側の出力

#データ内容備考
uint8ヘッダ0xA5のみ
uint8ヘッダ0x5Aのみ
uint16データ長\(N\)+2
0uint8送信元の論理デバイスID親機0x00,子機0x01-0x64,未設定子機0x78
1uint8コマンド番号送信側で指定した0x80未満の値
2[uint8]任意のデータ長さ\(N\)のバイト列
uint8チェックサムXOR
uint8フッタEOT (0x04)

送信側の出力(応答メッセージ)

#データ内容備考
uint8ヘッダ0xA5のみ
uint8ヘッダ0x5Aのみ
uint16データ長4
0uint8送信元の論理デバイスID0xDBのみ:自身を示す
1uint8コマンド番号0xA1のみ
2uint8応答ID128-255(0x80-0xFF)の範囲で続き番号を示す
3uint8処理結果成功1,失敗0
uint8チェックサムXOR
uint8フッタEOT (0x04)

使用例

親機から全子機に対してバイト列 11 22 33 AA BB CC を送信する例を示します。

【送信側:親機】

A5 5A 80 08 78 01 11 22 33 AA BB CC A4 04  <- 入力
A5 5A 80 04 DB A1 80 01 FB 04  <- 出力

末尾の0xA4はチェックサム:0x78から0xCCまでのXOR。

【受信側:全子機】

A5 5A 80 08 00 01 11 22 33 AA BB CC DC 04  <- 出力

末尾の0xDCはチェックサム:0x00から0xCCまでのXOR。

拡張形式の書式

書式モードの拡張形式を利用する場合は、次の書式に従います。

送信側の入力

送信先の指定に論理デバイスIDを使用する場合

#データ内容備考
uint8ヘッダ0xA5のみ
uint8ヘッダ0x5Aのみ
uint16データ長\(N\)+\(M\)+3
0uint8送信先の論理デバイスID親機0x00,子機0x01-0x64,全子機0x78
1uint8コマンド番号0xA0のみ
2uint8応答ID任意の値
3[uint8]オプション長さ\(N\)のオプション列
3+\(N\)[uint8]任意のデータ長さ\(M\)のバイト列(\(M\leqq80\)を推奨)
uint8チェックサムXOR
uint8フッタEOT (0x04)

送信先の指定に拡張アドレスを使用する場合

#データ内容備考
uint8ヘッダ0xA5のみ
uint8ヘッダ0x5Aのみ
uint16データ長\(N\)+\(M\)+7
0uint8拡張アドレスの指定0x80のみ
1uint8コマンド番号0xA0のみ
2uint8応答ID任意の値
3uint32送信先の拡張アドレスシリアルIDの先頭へ0x8を加えた値
7[uint8]オプション長さ\(N\)のオプション列
7+\(N\)[uint8]任意のデータ長さ\(M\)のバイト列(\(M\leqq80\)を推奨)
uint8チェックサムXOR
uint8フッタEOT (0x04)

オプション列の詳細

拡張形式では、オプション列を指定することで細かな設定を行うことができます。

オプション列は、オプションのIDと引数の繰り返しで表現します。終端は 0xFF とします。

ID引数初期値内容
0x01なし無効MAC ACKの有効化
0x02uint80x00アプリケーション再送の有効化
0x03uint160x0000初回送信の遅延の最小値
0x04uint160x0000初回送信の遅延の最大値
0x05uint1610アプリケーション再送の間隔
0x06なし無効平行要求の許可
0x07なし無効応答メッセージの無効化
0x08なし無効送信後スリープ
0x01:MAC ACKの有効化

MAC層のACK(確認応答)を有効化します。

頻繁にデータを送信する場合には適しませんが、信頼性を向上できる場合があります。

0x02:アプリケーション再送の有効化

MAC ACK を使用するときは、0x00-0x0Fを指定します。送信に成功するまで、それぞれ0-16回の再送を行います。

MAC ACK を使用しないときは、0x81-0x8Fを指定します。必ず1-16回の再送を行います。

応答メッセージは、すべての再送が終了してから出力します。

0x03:初回送信の遅延の最小値

初回送信までの遅延の最小値をミリ秒で指定できます。

0x04:初回送信の遅延の最大値

初回送信までの遅延の最大値をミリ秒で指定できます。

0x05:アプリケーション再送の間隔

アプリケーション再送を有効化した際の再送間隔をミリ秒で指定します。

0x06:平行要求の許可

平行要求を許可します。

平行要求を許可すると、要求を完了するまでブロックせず、次の要求処理を受け付けることができるようになります。

例えば 0.5 秒の遅延を設定した要求を3回連続して入力した場合、初期状態では 0.5 秒後、1.0秒後、1.5秒後と順番に処理します。ところが、平行要求を許可した場合は、0.5秒後に順不同で送信要求を処理します。なおパケット分割を必要とする場合は使用できません。

0x07:応答メッセージの無効化

送信側へデータを入力した際に出力される応答メッセージを無効とします。

0x08:送信後スリープ

送信後、速やかに本体をスリープさせます。

RXが立ち上がりエッジを検知すると、スリープから復帰します。何か1バイトのデータを入力してください。

スリープ復帰後、UART の初期化が終わると入力を受け付けます。

受信側の出力

#データ内容備考
uint8ヘッダ0xA5のみ
uint8ヘッダ0x5Aのみ
uint16データ長\(M\)+14
0uint8送信元の論理デバイスID親機0x00,子機0x01-0x64,未設定子機0x78
1uint8コマンド番号0xA0のみ
2uint8応答ID送信側で指定した値
3uint32送信元の拡張アドレスシリアルIDの先頭へ0x8を加えた値
7uint32送信先の拡張アドレス論理デバイスID使用時は0xFFFFFFFF
11uint8LQI受信時の電波通信品質
12uint16続くバイト列の長さバイト数\(M\)を表す
14[uint8]任意のデータ長さ\(M\)のバイト列
uint8チェックサムXOR
uint8フッタEOT (0x04)

送信側の出力(応答メッセージ)

#データ内容備考
uint8ヘッダ0xA5のみ
uint8ヘッダ0x5Aのみ
uint16データ長4
0uint8送信元の論理デバイスID0xDBのみ:自身を示す
1uint8コマンド番号0xA1のみ
2uint8応答ID入力時に指定した値
3uint8処理結果成功1,失敗0
uint8チェックサムXOR
uint8フッタEOT (0x04)

使用例

親機から子機に対してバイト列 11 22 33 AA BB CC を送信する例を示します。

論理デバイスIDを指定する例

親機から論理デバイスID0x01の子機へ送信する例を示します。

  • 応答IDは0x01
  • オプションなし

【送信側:親機】

A5 5A 80 0A 01 A0 01 FF 11 22 33 AA BB CC 82 04  <- 入力
A5 5A 80 04 DB A1 01 01 7A 04  <- 出力

末尾の0xC1はチェックサム:0x42から0xCCまでのXOR。

【受信側:子機】

A5 5A 80 14 00 A0 01 82 03 68 41 FF FF FF FF FF 00 06 11 22 33 AA BB CC 2D 04  <- 出力

末尾の0x2Dはチェックサム:0x00から0xCCまでのXOR。

拡張アドレスを指定する例

親機から拡張アドレス0x820163B2(シリアルID0x20163B2)の子機へ送信する例を示します。

  • 応答IDは0x01
  • オプションなし

【送信側:親機】

A5 5A 80 0E 80 A0 01 82 01 63 B2 FF 11 22 33 AA BB CC 51 04  <- 入力
A5 5A 80 04 DB A1 01 01 7A 04  <- 出力

末尾の0x51はチェックサム:0x80から0xCCまでのXOR。

【受信側:子機】

A5 5A 80 14 00 A0 01 82 03 68 41 82 01 63 B2 FF 00 06 11 22 33 AA BB CC 7F 04  <- 出力

末尾の0x7Fはチェックサム:0x00から0xCCまでのXOR。

MAC ACKを使用する例

親機から論理デバイスID0x01の子機へ MAC ACK を使用して送信する例を示します。

【送信側:親機】

A5 5A 80 0B 01 A0 01 01 FF 11 22 33 AA BB CC 83 04  <- 入力
A5 5A 80 04 DB A1 01 01 7A 04  <- 出力

末尾の0x83はチェックサム:0x01から0xCCまでのXOR。

【受信側:子機】

A5 5A 80 14 00 A0 01 82 03 68 41 00 00 01 01 FF 00 06 11 22 33 AA BB CC 2D 04  <- 出力

末尾の0x2Dはチェックサム:0x00から0xCCまでのXOR。

遅延を設ける例

親機から論理デバイスID0x01の子機へ 768ms の遅延を設けて送信する例を示します。

【送信側:親機】

A5 5A 80 0D 01 A0 01 03 03 00 FF 11 22 33 AA BB CC 82 04  <- 入力
A5 5A 80 04 DB A1 01 01 7A 04  <- 出力

末尾の0x82はチェックサム:0x01から0xCCまでのXOR。

【受信側:子機】

A5 5A 80 14 00 A0 01 82 03 68 41 FF FF FF FF FF 00 06 11 22 33 AA BB CC 2D 04  <- 出力

末尾の0x2Dはチェックサム:0x00から0xCCまでのXOR。

0xDB コマンド

インタラクティブモードの設定を行う代わりに、UART から 0xDB コマンドを入力することでモジュールの操作や設定を行うことができます。

1.3.4.1.2.2.1 - シリアル通信アプリ 書式モード(バイナリ)の 0xDB コマンド

書式モード(バイナリ)におけるインタラクティブモードを使用しない設定機能
書式モードでは、インタラクティブモードの代わりに0xDBコマンドを使うことで、UART接続されたデバイスから動的に設定を行えます。

入力の書式

#データ内容備考
uint8ヘッダ0xA5のみ
uint8ヘッダ0x5Aのみ
uint16データ長\(N\)+2
0uint8送信先の論理デバイスID自身を示す0xDBのみ
1uint8コマンド番号後述の値から選択
2[uint8]パラメータ設定値を示す長さ\(N\)のバイト列(オプション)
uint8チェックサムXOR
uint8フッタEOT (0x04)

コマンド番号の一覧

機能
0xF0ACKの有効化
0xF1端末情報の取得
0xF2端末設定の適用
0xF3端末設定の取得
0xF8端末の制御
0xFD端末設定の消去
0xFE端末設定の保存
0xFF端末のリセット

0xF0:ACKの有効化

ACK 応答の要求を行います。

パラメータはありません。

応答の書式

#データ内容備考
uint8ヘッダ0xA5のみ
uint8ヘッダ0x5Aのみ
uint16データ長3
0uint8送信先の論理デバイスID0xDBのみ
1uint8コマンド番号0xF0のみ
2uint8データ0x01のみ
uint8チェックサムXOR
uint8フッタEOT (0x04)

0xF1:端末情報の取得

アドレス等の情報を表示します。起動時にも出力されます。

パラメータはありません。

応答の書式

#データ内容備考
uint8ヘッダ0xA5のみ
uint8ヘッダ0x5Aのみ
uint16データ長17
0uint8送信先の論理デバイスID0xDBのみ
1uint8コマンド番号0xF1のみ
2uint32アプリケーションID
6uint32バージョン番号1.4.7なら00010407
10uint8論理デバイスID
11uint32シリアルID
15uint8サイレントモードの状態有効1, 無効0
16uint8ネットワークの状態UP1, DOWN0
uint8チェックサムXOR
uint8フッタEOT (0x04)

0xF2:端末設定の適用

設定を適用します。

応答の書式

成功した場合
#データ内容備考
uint8ヘッダ0xA5のみ
uint8ヘッダ0x5Aのみ
uint16データ長\(N\)+2
0uint8送信先の論理デバイスID0xDBのみ
1uint8コマンド番号0xF3のみ
2[uint8]設定内容長さ\(N\)の識別子とデータの繰り返し
uint8チェックサムXOR
uint8フッタEOT (0x04)
失敗した場合
#データ内容備考
uint8ヘッダ0xA5のみ
uint8ヘッダ0x5Aのみ
uint16データ長3
0uint8送信先の論理デバイスID0xDBのみ
1uint8コマンド番号0xF3のみ
2uint8エラー0xFFのみ
uint8チェックサムXOR
uint8フッタEOT (0x04)

0xF3:端末設定の取得

設定を取得します。

応答の書式

#データ内容備考
uint8ヘッダ0xA5のみ
uint8ヘッダ0x5Aのみ
uint16データ長\(N\)+2
0uint8送信先の論理デバイスID0xDBのみ
1uint8コマンド番号0xF3のみ
2[uint8]設定内容長さ\(N\)の識別子とデータの繰り返し
uint8チェックサムXOR
uint8フッタEOT (0x04)

0xF8:端末の制御

起動時にサイレントモードを有効としていた場合に、これを解除します。

応答の書式

#データ内容備考
uint8ヘッダ0xA5のみ
uint8ヘッダ0x5Aのみ
uint16データ長4
0uint8送信先の論理デバイスID0xDBのみ
1uint8コマンド番号0xF8のみ
2uint8データ0x11のみ
3uint8状態解除済み1, 未解除0
uint8チェックサムXOR
uint8フッタEOT (0x04)

0xFD:端末設定の消去

設定を初期化し、本体をリセットします。

パラメータおよび応答はありません。

0xFE:端末設定の保存

適用した設定を保存し、本体をリセットします。

パラメータおよび応答はありません。

0xFF:端末のリセット

適用した設定を破棄し、本体をリセットします。

パラメータおよび応答はありません。

パラメータの一覧(0xF2/0xF3

0xF2:端末設定の適用 および 0xF3:端末設定の取得 のパラメータは、識別子とデータ(ビッグエンディアン)の繰り返しで表現します。

識別子データ内容
0x00uint32アプリケーションID
0x01uint32周波数チャネルマスク
0x02uint16再送回数と出力
0x03uint8論理デバイスID
0x04uint8役割
0x05uint8中継レイヤ
0x06uint8通信モード
0x07uint32ボーレート
0x08uint8パリティ
0x09uint8暗号化機能
0x0A[uint8]暗号化キー
0x0Cuint16区切り文字
0xFFuint8エラー

0x00:アプリケーションID

アプリケーションIDを指定します。

0x01:周波数チャネルマスク

周波数チャネルのビットマスクを指定します。

使用するチャネルのビットを立てます。例えば、11チャネルを使う場合は1<<11です。

0x02:再送回数と出力

電波の送信出力と、透過モードおよびヘッダ付き透過モードにおいてパケットを追加で送信する回数を指定します。

下位の1バイトのみを使用します。そのうち上位の4ビットが再送回数(0-9)、下位の4ビットが送信出力(0-3)です。例えば、8回再送/出力3 であれば 0x0083です。

0x03:論理デバイスID

論理デバイスIDを指定します。

0x04:役割

子機のみ有効です。以下の値を指定します。通常はネットワーク層を利用しない配送方式を選択してください。

ネットワーク層を利用しない配送方式

  • 0:通常の指定(親機または子機)
  • 1-3:中継子機(論理デバイスIDを1-100 または 120とします)1-3の数値は最大中継段数を指します。最大中継段数まで再送を繰り返す方式のため、中継機の配置や数によっては重複したパケットを中継します。

ネットワーク層を利用する配送方式

  • 11:親機
  • 12:中継機
  • 13:子機

0x05:中継レイヤ

中継レイヤの番号です。中継機は中継レイヤ数の上位(より小さい値)の中継機・親機への接続を試みます。役割12としているときにだけ有効です。

0x06:通信モード

  • 0:透過モード
  • 1:書式モード(バイナリ)
  • 2:書式モード(バイナリ)
  • 3:チャットモード
  • 4:ヘッダ付き透過モード

0x07:ボーレート

UART ボーレートを指定します。

0x08:パリティ

以下の設定の組み合わせにおいて、設定値の総和を指定します。

  • Bit
    • 0:8Bit
    • 8:7Bit
  • Parity
    • 0:None
    • 1:Odd
    • 2:Even
  • Stop
    • 0:STOP 1
    • 4:STOP 2

例えば、7-E-1 なら 8+2+0=10(0xA) を指定します。

0x09:暗号化機能

暗号化機能の有無を指定します。

  • 0:無効
  • 1:AES128bit の暗号化を有効

0x0A:暗号化キー

16バイトの暗号化キーを指定します。

インタラクティブモードでは設定できないバイナリ列を格納できます。この場合、インタラクティブモードの表示が崩れる場合があります。

0x0C:区切り文字

区切り文字列の指定を行います(0x00-0xFF)。

サイレントモード

設定方法

インタラクティブモードで以下の設定を行います。

  • r: Role80 を足しておく。例えば、通常の親機や子機なら80とする。
  • m: UART mode を書式モード(A/B)としておく。

動作確認

起動直後に出力される DB F1 応答の内容を確認します。

解除方法

DB F8 要求を行います(バイナリ形式:A5 5A 80 03 DB F8 10 33 04)。

注意点

  • サイレントモードの再設定はできません。
  • サイレントモードが有効のときに送信コマンドを入力した場合の動作は未定義です。

1.3.4.1.2.3 - シリアル通信アプリのチャットモード

プロンプト表示とエコーバックを行うモード
チャットモードは、プロンプト表示とエコーバックによりテキストチャットを実現します。

MONOSTICK を PC 等へ接続することで、複数の端末同士のチャットを行うことができます。

概要

テキストチャットを実現します。

送信側の入力受信側の出力
任意の文字列任意の文字列+補助情報

プロンプトの表示とエコーバック(入力した文字の出力)を行います。すべての端末は子機として、同報通信を行います。

例えば、ある端末から他の端末へ Hello という文字列を送信する場合は、次のように振る舞います。

【送信側】

810A4778:0> Hello  <- 入力
810A4778:1>  <- 出力

【受信側】

[810A4778:0] Hello  <- 出力
82018CA0:0>  <- 出力

チャットモードは、プロンプトの表示とエコーバック(自身へ入力された文字の出力)を行います。

全ての端末は子機としたうえで、送信内容はブロードキャストします。すべての端末と通信できますが宛て先は指定できません。またバイナリデータは送れません。文字列のみ対応しています(0x00-0x1F, 0x7F は送信不可)。

中継は3段(3ホップ)まで対応しています。初期設定では中継しません。

親機と子機の区別

チャットモードは、親機と子機を区別しません。

アプリケーションIDと周波数チャネルが同一であれば、どの端末へ入力したデータもほかの端末へと送信されます。

ネットワークの構成イメージ

ネットワークの構成イメージ

送信元の判別

受信側に出力される補助情報の識別情報から送信元を判別できます。

インタラクティブモードのh: Header formatを空欄としたときは、7桁のシリアルIDの先頭へ0x8を付与した拡張アドレスを使用します。例えば、以下の出力では送信元のシリアルIDが0x10A4778であったと分かります。

[810A4778:0] Hello

インタラクティブモードのh: Header formatへ任意の文字列を設定したときは、それをハンドル名として利用します。ただし、ハンドル名は無線パケットに格納するデータを消費します。

送信側の入力書式

プロンプトに続けて、メッセージと改行文字を入力します。

データ内容備考
[char]メッセージ0x00-0x1F, 0x7Fは不可
charCR (0x0D/'\r')単体でも可
charLF (0x0A/'\n')単体でも可
810A4778:0> Hello

受信側の出力書式

補助情報に続けて、受信したメッセージを出力します。

補助情報は、モジュールの拡張アドレスまたはハンドル名と、続き番号を含みます。

データ内容備考
char補助情報のヘッダ[のみ
[char]識別情報8桁の拡張アドレスまたはハンドル名
char補助情報の区切り文字:のみ
[char]続き番号0から開始
char補助情報のフッタ]のみ
char区切り文字半角スペースのみ
[char]メッセージ
charフッタCR (0x0D/'\r')
charフッタLF (0x0A/'\n')
[810A4778:0] Hello

その他の入力

エスケープシーケンスに対応したターミナルでは、以下の制御コマンドを使用できます。

  • Ctrl-L:画面のクリア
  • Ctrl-C:入力のキャンセル
  • BS/DEL:カーソルを戻す

1.3.4.1.2.4 - シリアル通信アプリの透過モード

純粋にUARTを無線化するモード
透過モードは、ヘッダの付加やエコーバック、プロンプト表示を行わず、有線接続された UART と同じような振る舞いを実現します。
外部マイコン同士を接続するイメージ

外部マイコン同士を簡単に接続できますが、書式を用いて通信を最適化するには書式モード(アスキーバイナリ)が適しています。

概要

純粋にUARTを無線化します。

送信側の入力受信側の出力
任意のデータ任意のデータ

書式を必要としないため、既存の UART 通信を簡単に無線化できます。

一方で、データの区切りがあいまいになってしまうほか、受信側の出力から送信元を判別できないといった欠点があります。

初期状態では、送信トリガ文字にCRLFを指定しています。したがって、送信側へ入力されたデータをCRLFで区切り、CRLF よりも前のデータを送信します。

例えば、送信側の端末へ Hello<Enter> と入力すると、受信側の端末はそのまま Hello を出力します。

【送信側】

Hello  <- 入力

【受信側】

Hello  <- 出力

連続して入力された文字列を80バイトごとに分割して送信します。トリガ文字までのデータは通常80バイト以下としてください。

全ての端末は子機としたうえで、送信内容はブロードキャストします。すべての端末と通信できますが宛て先は指定できません。アスキー文字だけでなく、バイナリデータも送信できます。

中継は3段(3ホップ)まで対応しています。初期設定では中継しません。

親機と子機の区別

透過モードは、親機と子機を区別しません。

アプリケーションIDと周波数チャネルが同一であれば、どの端末へ入力したデータもほかの端末へと送信されます。

ネットワークの構成イメージ

ネットワークの構成イメージ

送信元の判別

透過モードでは、送信元を判別できません。

送信元を判別するには、送信側へ入力するデータそのものに送信元の情報を含める必要があります。

送信トリガ

送信側の入力に書式はありませんが、データはある時点で分割されたのち、パケットごとに無線で送信されます。

したがって、次に挙げる送信トリガを意識しなくてはなりません。

  • データ入力後のタイムアウトを迎えたとき
  • 入力データが最小データサイズを満たしたとき
  • 送信トリガ文字を受け取ったとき

送信トリガの設定は、インタラクティブモードのk:送信トリガ項目から指定します。

設定例

送信トリガ文字をLF、最小データサイズを8バイト、タイムアウトを30msとする場合は次のように設定します。

 m: set UART mode (D)
 k: set Tx Trigger (sep=0x0a, min_bytes=8 dly=30[ms])
 o: set option bits (0x00000100)

1.3.4.1.2.5 - シリアル通信アプリのヘッダ付き透過モード

受信側の出力にだけヘッダを付加するモード
ヘッダ付き透過モードは、受信側の出力にだけ補助情報を付加します。

概要

初期状態で有効となっています。

送信側の端末へ任意のデータを入力すると、受信側の端末は受信した内容に特定の書式で補助情報を付加したデータを出力します。

送信側の入力受信側の出力
任意のデータ任意のデータ+補助情報

初期状態では、送信側へ入力されたデータをCRLFで区切り、CRLF よりも前のデータを送信します。

例えば、送信側の端末へ Hello<Enter> と入力すると、受信側の端末は補助情報を含んだ書式で Hello を出力します。送信側の端末も送信完了といったメッセージを伝える書式を出力します。

【送信側】

Hello  <- 入力
;U;00004;219;0x820163B2;000;000;0,1,Hel...;6E;  <- 出力

【受信側】

;U;00003;000;0x820163B2;255;000;Hello;42;  <- 出力

受信側が出力する補助情報は、送信元のアドレスや受信時の電波強度、チェックサム等を含みます。補助情報の書式はカスタマイズできます。

親機と子機の区別

ヘッダ付き透過モードは、親機と子機を区別しません。

アプリケーションIDと周波数チャネルが同一であれば、どの端末へ入力したデータもほかの端末へと送信されます。

ネットワークの構成イメージ

ネットワークの構成イメージ

送信元の判別

ヘッダ付き透過モードで受信したデータからは、送信元を判別できます。

受信側が出力する補助情報を表すヘッダに含むことのできる論理デバイスIDやシリアルIDのデータを利用します。

受信側の出力書式

出力書式はセミコロン(;)区切りとして表現されます。

【初期状態における出力例】

;U;00777;120;0x81025A17;120;013;HELLO;79;

この出力例は、次のように解釈できます。

データ内容
Uchar固定値U
00777uint16出力時のタイムスタンプ777
120uint8送信元の論理デバイスID120 IDなし子機
0x81025A17uint32送信元の拡張アドレス81025A17
120uint8LQI(電波通信品質)120/255
013uint8送信元の続き番号13
HELLO[uint8]入力データHELLO
79uint8XORチェックサム0x79

ヘッダフォーマットによるカスタマイズ

受信側の出力書式は、ヘッダフォーマットに従います。

ヘッダフォーマットを変更することで、受信側が出力する補助情報の内容やチェックサムの計算範囲をカスタマイズできます。

ヘッダフォーマットの変更は、インタラクティブモードの h: set header format から行います。

最も簡単な書式

最も簡単な書式を表すヘッダフォーマットは *\n です。受信したデータへ CRLF の改行文字を付与して出力します。

 h: set header format [*\n]

この場合にHELLOを送信すると、次のように振る舞います。

【受信側】

HELLO<CR><LF> または HELLO<LF>

【送信側】

HELLO<CR><LF>

フォーマットを構成する特殊文字

ヘッダフォーマットに次の特殊文字を含めることで、出力内容をカスタマイズできます。

全般
内容
*受信したデータ
&hl任意の文字(アスキー)(例:&20は空白)
<チェックサム計算の開始位置(未設定で先頭から)
>チェックサム計算の終了位置(v1.4.6以降のみ)
\(バックスラッシュ・¥)に続くもの
内容
\nCRLF (0x0D 0x0A)
\tTAB
\**
\%%
\<<
\>>
\&&
%に続くもの
内容長さデータ
%A送信元アドレス(32bit)8桁16進数
%a送信元アドレス(32bit)10桁16進数
%I送信元論理アドレス(8bit)2桁16進数
%i送信元論理アドレス(8bit)3桁10進数
%T現在のシステム時間(秒)4桁16進数
%t現在のシステム時間(秒)5桁10進数
%S送信元が設定した続き番号2桁16進数
%s送信元が設定した続き番号3桁16進数
%Q受信時の電波強度2桁16進数
%q受信時の電波強度3桁10進数
%Xチェックサム2桁16進数
%xチェックサム3桁10進数

チェックサムの計算

チェックサムはデータの先頭あるいはヘッダフォーマットの<を指定した箇所から%X,%xの直前までを XOR(排他的論理和)にて計算します。

初期状態の例

初期状態ではヘッダフォーマットを ;U;%t;%i;0x%A;%q;%s;<*;%X;\n としており、チェックサムの計算範囲は*;です。

すなわち、HELLO を送信した場合は HELLO; のバイナリデータを対象とするため、チェックサムは0x79です。

【Python による検証コード】

from functools import reduce

def main():
    data = "HELLO;"
    checksum = reduce(lambda x, y: x ^ y, data.encode("ascii"))
    print(f"{data} -> {hex(checksum)}")

if __name__ == "__main__":
   main()  # HELLO; -> 0x79

その他の例

例えば、ヘッダフォーマットを ;%I;*;%X とした場合を考えます。

<を指定していないため、チェックサムの計算範囲は;%I;*;です。

すなわち、HELLO を送信した場合は ;000;HELLO; のバイナリデータを対象とするため、チェックサムは 0x49 です。

【Python による検証コード】

from functools import reduce

def main():
    data = ";000;HELLO;"
    checksum = reduce(lambda x, y: x ^ y, data.encode("ascii"))
    print(f"{data} -> {hex(checksum)}")

if __name__ == "__main__":
   main()  # ;000;HELLO; -> 0x49

送信トリガ

送信側の入力に書式はありませんが、データはある時点で分割されたのち、パケットごとに無線で送信されます。

したがって、次に挙げる送信トリガを意識しなくてはなりません。

  • データ入力後のタイムアウトを迎えたとき
  • 入力データが最小データサイズを満たしたとき
  • 送信トリガ文字を受け取ったとき

送信トリガの設定は、インタラクティブモードのk:送信トリガ項目から指定します。

設定例

送信トリガ文字をLF、最小データサイズを8バイト、タイムアウトを30msとする場合は次のように設定します。

 m: set UART mode (E)
 k: set Tx Trigger (sep=0x0a, min_bytes=8 dly=30[ms])
 o: set option bits (0x00000100)

1.3.4.1.3 - シリアル通信アプリのカスタムデフォルト機能

デフォルトの設定を変更したファームウェアの作成
カスタムデフォルト機能によって、ファームウェアに含まれるデフォルトのパラメータを変更できます。

例えば、ボーレートを 115200bps から 9600bps へ変更したファームウェアを作成しておけば、最初から 9600bps で使用できます。

設定手順

1. 設定を適用

インタラクティブモードの設定を変更し、Sを押下して保存します。

2. 設定内容をダウンロード

xmodem プロトコルのデータをダウンロードできるソフトウェアを用意します。

再度インタラクティブモードへ入った状態(項目を選ぶ前の状態)として、xmodem のダウンロードを要求します。

ダウンロードに成功すると、128バイトのファイルを生成します(xmodem の実装によっては、小さいサイズになることもあります)。

3. カスタムバイナリの作成

ダウンロードしたファイルをファームウェアのバイナリファイルの末尾へ連結し、カスタムバイナリを作成します。

連結には、コマンドラインツールや汎用のファイル連結ツールを使用してください。

実行例

ダウンロードした xmodem のファイルを conf.bin、元のバイナリファイルをApp_Uart_BLUE_L1305_V1-4-X.bin、作成するカスタムバイナリをApp_Uart_custom_V1-4-X.binとした場合の例を示します。

【Windows】

copy App_Uart_BLUE_L1305_V1-4-X.bin App_Uart_custom_V1-4-X.bin
type conf.bin >> App_Uart_custom_V1-4-X.bin

【macOS / Linux】


cat App_Uart_BLUE_L1305_V1-4-X.bin conf.bin > App_Uart_custom_V1-4-X.bin

4. カスタムバイナリの書き込み

連結したカスタムバイナリを TWELITE へ書き込みます。

1.3.4.1.4 - シリアル通信アプリの通信における注意点

安定した通信を実現するための注意点
安定した通信を実現するための注意点を記載しています。

UART のデータ入出力

UART の入力には、入力側に 4KB、出力側に 4KB のバッファを確保しています。2系統のUARTを出力する場合は、各系統の入力に 2KB、出力に 2KB を利用します。

書式モードやチャットモードでバッファのサイズを意識する場面は多くありませんが、ヘッダ付き透過モードや透過モードで連続的に系列を入力する場合や、書式モードであっても多数の系列を一度に入力する場合は、バッファサイズの上限を意識する必要があります。出力においても、遅いボーレートを設定した場合には、無線で受信したデータの出力が間に合わない可能性があります。

バッファの上限を超えた場合は、その境界でのデータは保護されません。データ抜けが発生します。特に入力側では後述のフロー制御ピンを参照することを検討してください。

UART のフロー制御

入力側のフロー制御については、 RTS ピン同様の振る舞いをするように実装しています。使用するピンは PWM1(DIO5) であり、その対象は主UARTポートです。入力を受け付けないときに High、入力を受け付けるときに Low 状態となります。なお出力側のフロー制御には対応していません。受信側のデバイスでは、十分なボーレートと処理速度を確保してください。

  • 電源投入・リセット直後は High です。UART が初期化されると Low。
  • UART の入力バッファが 7/8 を超えたときに High となります。下回ると Low。
  • 透過モードでは、パケット送信中は High となります。

無線通信エラーの対策

受信側にデータ抜けが発生する場合は、無線の再送回数を増やしてください。

追加送信するパケットの数を増やすことで、受信の成功率を向上できる場合があります。

再送回数はインタラクティブモードで設定できます(x: set RF Conf)。

1.3.4.1.5 - インタラクティブモード(シリアル通信アプリ)

インタラクティブモードによる設定変更
インタラクティブモードでアプリの詳細設定を行うことができます。

ここではシリアル通信アプリ(App_Uart)に固有の機能を説明します。共通機能については、TWELITE APPS マニュアル のトップページを参照してください。

表示例

次のような画面を表示します。

--- CONFIG/TWE UART APP V1-04-5/SID=0x82018ca0/LID=0x78 -- ---
 a: set Application ID (0x67720103)
 i: set Device ID (120=0x78)
 c: set Channels (18)
 x: set RF Conf (3)
 r: set Role (0x0)
 l: set Layer (0x1)
 b: set UART baud (38400)
 B: set UART option (8N1)
 m: set UART mode (E)
 k: set Tx Trigger (sep=0x0d0a, min_bytes=0 dly=0[ms])
 h: set header format [;U;%t;%i;0x%A;%q;%s;<*>;%X;\n]
 C: set crypt mode (0)
 o: set option bits (0x00000100)
---
 S: save Configuration
 R: reset to Defaults

コマンド

設定項目初期値備考
aアプリケーションID0x6772010332bit
i論理デバイスID120親機0/121,子機1-100,IDなし子機120
c周波数チャネル1811-26
x再送回数と送信出力3
再送回数01-9回、0は無効
送信出力30-3
r役割0通常0,中継子機1-3,その他
l中継レイヤ0x01
bUART代替ボーレート38400BPSピンで有効化
BUARTオプション8N1
m通信モードEA/B/C/D/E
k送信トリガ0x0d0a,0,0トリガ文字、最小サイズ、タイムアウト
hヘッダ/ハンドル名参照
ヘッダヘッダ付き透過モードの場合
ハンドル名チャットモードの場合
C暗号化0無効0,AES128bit1
oオプションビット0x00000000その他の詳細設定

各コマンドの詳細を次に示します。

a:アプリケーションID

通信を行う端末はすべて同一の値とします。論理的にネットワークを分離します。

i:論理デバイスID

複数の子機を識別する必要がある場合に設定します。

識別の必要がない、できない場合は120としてください。識別の必要がある場合は、子機は1-100の任意の値に、親機は0あるいは121としてください。

c:周波数チャネル

通信を行う端末はすべて同一の値とします。物理的にネットワークを分離します。

x:送信出力と再送回数

電波の送信出力と、透過モードおよびヘッダ付き透過モードにおいてパケットを追加で送信する回数を指定します。

r:役割

子機のみ有効です。以下の値を指定します。通常はネットワーク層を利用しない配送方式を選択してください。

ネットワーク層を利用しない配送方式

  • 0:通常の指定(親機または子機)
  • 1-3:中継子機(論理デバイスIDを1-100 または 120とします)1-3の数値は最大中継段数を指します。最大中継段数まで再送を繰り返す方式のため、中継機の配置や数によっては重複したパケットを中継します。

ネットワーク層を利用する配送方式

書式モードのみ対応しています。

  • 11:親機
  • 12:中継機
  • 13:子機

l:中継レイヤ

中継レイヤの番号です。中継機は中継レイヤ数の上位(より小さい値)の中継機・親機への接続を試みます。役割12としているときにだけ有効です。

m:通信モード

  • A:書式モード(アスキー)
  • B:書式モード(バイナリ)
  • C:チャットモード
  • D:透過モード
  • E:ヘッダ付き透過モード

b:UART代替ボーレート

BPSピンをGNDへ接続して起動した場合に選択される代替ボーレートを38400bpsから上書きします。

値は9600/19200/38400/57600/115200/230400から選択できます。他の値を指定すると、誤差が生じる可能性があります。

B:UARTオプション

Bit-Parity-Stop の順で3文字を指定します。

  • Bit
    • 8:8Bit
    • 7:7Bit
  • Parity
    • N:None
    • O:Odd
    • E:Even
  • Stop
    • 1:STOP 1
    • 2:STOP 2

k:送信トリガ

透過モードとヘッダ付き透過モードの入力へ適用する送信トリガを設定します。

カンマ,で区切り、以下の順で入力してください。

  1. 送信トリガ文字
  2. 最小データサイズ
  3. タイムアウト

送信トリガ文字

この文字が入力されたときにパケットを送信します(最小データサイズを満たしていない場合を除く)。

インタラクティブモードでは、16進数のASCIIコードを指定します。先頭の0xは無視されます。初期状態ではCRLFとしています。

送信されるデータには送信トリガ文字も含まれます。送信トリガ文字を有効とするには、オプションビット 0x00000100 を指定する必要があります(デフォルト指定済み)。

最小データサイズ

連続して扱うデータの最小サイズを指定します。最小データサイズを満たすまでのデータに送信トリガ文字が含まれていても、これは無効となります。

インタラクティブモードでは、バイト数として1-80の数値を指定します。0で無効となります。初期状態では無効です。

タイムアウト

最後の入力からパケットを送信するまでの待ち時間を示します。

インタラクティブモードでは、ミリ秒単位で10-200の数値を指定します。0で無効となります。初期状態では無効

h:ヘッダ/ハンドル名

ヘッダ付き透過モードに対してはヘッダのフォーマットを、チャットモードに対してはハンドル名を示します。

ヘッダ(ヘッダ付き透過モード)

ヘッダ付き透過モードに対しては、ヘッダのフォーマット書式を指定します。

ハンドル名(チャットモード)

相手端末に表示するハンドル名を指定します。

最大23文字です。送信するデータ(80バイト)の領域を消費します。

C:暗号化

暗号化機能の有無を指定します。

AES128bitの暗号化を有効とするには、1を指定してください。

o:オプションビット

32bit の数値を指定します。各ビットに紐付いた設定を有効化できます。

対象ビット設定項目初期ABCDE
0x00000001M3の内部プルアップを停止0️⃣
0x00000002未使用0️⃣
0x00000100送信トリガの有効化1️⃣
0x00000200新たな入力系列を優先0️⃣
0x00001000応答メッセージを停止0️⃣
0x00004000重複チェッカの緩和0️⃣
0x00010000強制的に代替ボーレートを適用0️⃣
0x00020000副ポートへ同時出力0️⃣
0x00040000主ポートの切り替え0️⃣
0x00100000中継レイヤを制限0️⃣

オプションビットの詳細

オプションビットの値の各ビットに紐付いた設定を解説します。

00000001M3の内部プルアップを停止

TWELITE DIP におけるスリープ設定用のピン M3 の内部プルアップを停止します。

00000100:送信トリガの有効化

透過モードまたはヘッダ付き透過モードにおいて、送信トリガの設定を有効とします。

00000200:新たな入力系列を優先

書式モード(アスキー・バイナリ)、透過モード、ヘッダ付き透過モードにおいて、送信完了前に複数の系列が入力された際、新しいものを優先します。

00001000:応答メッセージを停止

書式モード(アスキー・バイナリ)、ヘッダ付き透過モードにおいて、送信完了時の応答メッセージを停止します。

00004000:重複チェッカの緩和

受信側において、重複チェッカの条件を緩和します。

00010000:強制的に代替ボーレートを適用

起動時にBPSピンの入力が Low でなくとも、代替ボーレートの設定を適用します。

00020000:副ポートへ同時出力

シリアル出力TXの内容をシリアル副出力TX_SUBにも適用します。

00040000:主ポートの切り替え

シリアル入出力TX/RXとシリアル副入出力TX_SUB/RX_SUBを入れ替えます。

00100000:中継レイヤを制限

書式モード(アスキー・バイナリ)において、ネットワーク層を利用する配送方式を指定した場合に、必ず1階層上位に位置する中継機や親機へ送信させます。通常、ネットワーク層を利用する配送方式では、上位層で最も電波通信品質の高い中継機や親機へ送信します。

中継機能について

通信距離が足りない場合や、障害物があって通信できない場合には、中継機を使用することが有用です。

中継機能を持った端末は、自身が受信したパケットを他の端末へ送信します。

中継機能の設定

通常は、インタラクティブモードへ入った状態で役割の値を1-3へ変更します。初期値は0で、中継機能を持ちません。

r: set Role (0x0)

1-3の数値は最大中継段数を指します。例えば3を指定すると最大3段まで中継されます。

親機子機の区別をする場合、子機のみ有効です。

設定例

次のネットワーク構成は、赤色の端末の役割0、青色の端末の役割3とした場合を示します。

役割の設定による中継の例

役割の設定による中継の例

赤色の端末を追加すると、赤色の端末同士で最大3段の中継を伴う通信を実現できます。

送信機や受信機を追加する例

送信機や受信機を追加する例

1.3.5 - キューアプリ マニュアル

モノの動きを無線でお知らせ。
キューアプリ(App_CUE)は磁気・加速度センサータグ TWELITE CUE専用のアプリです。

1.3.5.1 - キューアプリ マニュアル

最新版

機能

モノに装着することで動きや状態を無線で送信できます。

  • 複数の無線タグからのデータを親機で収集可能
  • 複数の無線タグを親機で制御可能
  • 16チャネルで複数システムを個別に運用可能
  • グループ毎に異なるアプリケーションIDを設定することで、同一チャネルに複数システムを混在可能
  • 暗号化と暗号化鍵の設定

1.3.5.1.1 - キューアプリの動作モード

キューアプリの動作モード

1.3.5.1.1.1 - キューアプリのTWELITE CUEモード

衝撃の検知やドアの開閉、加速度の計測のすべてを行うことができるオールインワンモード

加速度の計測、衝撃の検知、姿勢の検知、磁石の検知といった機能をすべて利用できるオールインワンモードです。

工場出荷時は本モードに設定されております。

設定

本モードを使用する場合は以下の項目を設定してください。

設定コマンド設定項目設定値備考
pセンサ固有パラメータの設定00000000

親機の出力

代表的な電池寿命

  • 5秒に1度の定期送信のみの場合、約80日
  • 5秒に1度の定期送信 + 1分に1度TWELITE CUEを動かした場合、約80日
  • 1分に1度の定期送信のみの場合、約700日
  • 1分に1度の定期送信 + 1分に1度TWELITE CUEを動かした場合、約565日