このアクトには以下が含まれます。
- 無線パケットの送受信
- インタラクティブモードによる設定 - <STG_STD>
- ステートマシンによる状態遷移制御 - <SM_SIMPLE>
- <PAL_MOT>または
ボードビヘイビアによるボード操作
アクトの解説
起床→加速度センサーの取得開始→加速度センサーのFIFO割り込み待ち→加速度センサーのデータの取り出し→無線送信→スリープという流れになります。
宣言部
インクルード
##include <TWELITE> // MWXライブラリ基本
##include <NWK_SIMPLE> // ネットワーク
##include <SM_SIMPLE> // ステートマシン(状態遷移)
##include <STG_STD> // インタラクティブモード
/*** board selection (choose one) */
##define USE_PAL_MOT
//#define USE_CUE
// board dependend definitions.
##if defined(USE_PAL_MOT)
##define BRDN PAL_MOT
##define BRDC <PAL_MOT>
##elif defined(USE_CUE)
##define BRDN CUE
##define BRDC <CUE>
##endif
// include board support
##include BRDC
MOT PALまたはTWELITE CUEに対応するため、インクルード部分はマクロになっています。USE_PAL_MOT
または、USE_CUE
のいずれかを定義します。
USE_PAL_MOT
が定義されている場合は動作センサーパルのボードビヘイビア<PAL_MOT>
をインクルードしています。
状態定義
enum class E_STATE : uint8_t {
INTERACTIVE = 255,
INIT = 0,
START_CAPTURE,
WAIT_CAPTURE,
REQUEST_TX,
WAIT_TX,
EXIT_NORMAL,
EXIT_FATAL
};
SM_SIMPLE<E_STATE> step;
loop()
中の順次処理を行うために状態を定義し、またステートマシンstep
を宣言します。
センサーデータ格納
struct {
int32_t x_ave, y_ave, z_ave;
int32_t x_min, y_min, z_min;
int32_t x_max, y_max, z_max;
uint16_t n_seq;
uint8_t n_samples;
} sensor;
センサーデータを格納するためのデータ構造です。
setup()
/// load board and settings objects
auto&& brd = the_twelite.board.use BRDC (); // load board support
auto&& set = the_twelite.settings.use<STG_STD>(); // load save/load settings(interactive mode) support
auto&& nwk = the_twelite.network.use<NWK_SIMPLE>(); // load network support
ボード、設定、ネットワークの各ビヘイビアオブジェクトの登録を行います。
インタラクティブモード
// settings: configure items
set << SETTINGS::appname("MOT");
set << SETTINGS::appid_default(DEFAULT_APP_ID); // set default appID
set << SETTINGS::ch_default(DEFAULT_CHANNEL); // set default channel
set << SETTINGS::lid_default(0x1); // set default LID
set.hide_items(E_STGSTD_SETID::OPT_DWORD2, E_STGSTD_SETID::OPT_DWORD3, E_STGSTD_SETID::OPT_DWORD4, E_STGSTD_SETID::ENC_KEY_STRING, E_STGSTD_SETID::ENC_MODE);
// if SET=LOW is detected, start with intaractive mode.
if (digitalRead(brd.PIN_SET) == PIN_STATE::LOW) {
set << SETTINGS::open_at_start();
brd.set_led(LED_TIMER::BLINK, 300); // slower blink
step.next(STATE::INTERACTIVE);
return;
}
// load settings
set.reload(); // load from EEPROM.
OPT_BITS = set.u32opt1(); // this value is not used in this example.
インタラクティブモードの初期化を行います。
まず、設定項目の調整を行います。ここでは、メニュー項目で表示されるタイトル名SETTINGS::appname
、アプリケーションIDのデフォルト値の設定SETTINGS::appid_default
、チャネルのデフォルトSETTINGS::ch_default
、論理デバイスIDのデフォルトSETTINGS::lid_default
、非表示項目の設定.hide_items()
を行います。
このサンプルでは起動時にSETピンがLOである場合にインタラクティブモードに遷移します。digitalRead(brd.PIN_SET)
によりピンがLOであることを確認できた場合は、SETTINGS::open_at_start()
を指定します。この指定によりsetup()
を抜けた後に速やかにインタラクティブモード画面が表示されます。画面が表示されてもbegin()
やloop()
が実行されます。このサンプルでは状態STATE::INTERACTIVE
としてloop()
中ではスリープなどの動作はせず何もしないようにします。
続いて設定値を読み出します。設定値を読むには必ず.reload()
を実行します。このサンプルではオプションビット設定.u32opt1()
を読み出します。
the_twelite
the_twelite << set;
the_twelite
は、システムの基本的な振る舞いを管理するクラスオブジェクトです。このオブジェクトは、setup()
内でアプリケーションIDやチャネルなど様々な初期化を行います。
ここではインタラクティブモードの設定値の一部を反映しています。
インタラクティブモード設定で反映した項目を別の設定に変更したい場合は、続いて上書きしたい設定を行います。
the_twelite << set;// インタラクティブモード
the_twelite << twenet::channel(19); // chを19に上書き設定
NWK_SIMPLE
オブジェクト
nwk << set;
ネットワークビヘイビアオブジェクトに対しても設定を行います。インタラクティブモードの論理デバイスID(LID)と再送設定が反映されます。
その他、ハードウェアの初期化など
brd.set_led(LED_TIMER::BLINK, 100);
LEDのブリンク設定などを行います。
begin()
void begin() {
auto&& set = the_twelite.settings.use<STG_STD>();
if (!set.is_screen_opened()) {
// sleep immediately, waiting for the first capture.
sleepNow();
}
}
setup()
を終了した後に呼ばれます。ここでは初回スリープを実行しています。ただしインタラクティブモードの画面が表示される場合はスリープしません。
wakeup()
void wakeup() {
Serial << crlf << "--- PAL_MOT(OneShot):"
<< FOURCHARS << " wake up ---" << crlf;
eState = E_STATE::INIT;
}
起床後は状態変数eState
を初期状態INITにセットしています。この後loop()
が実行されます。
loop()
void loop() {
auto&& brd = the_twelite.board.use<PAL_MOT>();
do {
switch(step.state()) {
case STATE::INTERACTIVE:
break;
...
} while(step.b_more_loop());
}
loop()
の基本構造は<SM_STATE>
ステートマシンstate
を用い_switch … case_節での制御です。初期状態はSTATE::INIT
またはSTATE::INTERACTIVE
です。
STATE::INTERACTIVE
インタラクティブモード画面が表示されているときの状態です。何もしません。この画面ではSerialの入出力はインタラクティブモードが利用します。
STATE::INIT
初期状態のINITです。
case STATE::INIT:
brd.sns_MC3630.get_que().clear(); // clear queue in advance (just in case).
memset(&sensor, 0, sizeof(sensor)); // clear sensor data
step.next(STATE::START_CAPTURE);
break;
状態INITでは、初期化(結果格納用のキューのクリア)や結果格納用のデータ構造の初期化を行います。STATE::START_CAPTUREに遷移します。この遷移設定後、もう一度_while_ループが実行されます。
STATE::CAPTURE
case STATE::START_CAPTURE:
brd.sns_MC3630.begin(
// 400Hz, +/-4G range, get four samples and will average them.
SnsMC3630::Settings(
SnsMC3630::MODE_LP_400HZ, SnsMC3630::RANGE_PLUS_MINUS_4G, N_SAMPLES));
step.set_timeout(100);
step.next(STATE::WAIT_CAPTURE);
break;
状態START_CAPTURE
では、MC3630センサーのFIFO取得を開始します。ここでは400Hzで4サンプル取得できた時点でFIFO割り込みが発生する設定にしています。
例外処理のためのタイムアウトの設定と、次の状態STATE::WAIT_CAPTURE
に遷移します。
STATE::WAIT_CAPTURE
case STATE::WAIT_CAPTURE:
if (brd.sns_MC3630.available()) {
brd.sns_MC3630.end(); // stop now!
状態WAIT_CAPTURE
では、FIFO割り込みを待ちます。割り込みが発生し結果格納用のキューにデータが格納されるとsns_MC3630.available()
がtrue
になります。sns_MC3630.end()
を呼び出し処理を終了します。
sensor.n_samples = brd.sns_MC3630.get_que().size();
if (sensor.n_samples) sensor.n_seq = brd.sns_MC3630.get_que()[0].get_t();
...
サンプル数とサンプルのシーケンス番号を取得します。
// get all samples and average them.
for (auto&& v: brd.sns_MC3630.get_que()) {
sensor.x_ave += v.x;
sensor.y_ave += v.y;
sensor.z_ave += v.z;
}
if (sensor.n_samples == N_SAMPLES) {
// if N_SAMPLES == 2^n, division is much faster.
sensor.x_ave /= N_SAMPLES;
sensor.y_ave /= N_SAMPLES;
sensor.z_ave /= N_SAMPLES;
}
...
すべてのサンプルデータに対して読み出し、平均値をとる処理をします。
// can also be:
// int32_t x_max = -999999, x_min = 999999;
// for (auto&& v: brd.sns_MC3630.get_que()) {
// if (v.x >= x_max) x_max = v.x;
// if (v.y <= x_min) x_min = v.x;
// ...
// }
auto&& x_minmax = std::minmax_element(
get_axis_x_iter(brd.sns_MC3630.get_que().begin()),
get_axis_x_iter(brd.sns_MC3630.get_que().end()));
sensor.x_min = *x_minmax.first;
sensor.x_max = *x_minmax.second;
...
ここでは取得されたサンプルに対して、各軸に対応するイテレータを用い最大・最小を得ています。
std::mimmax_element
紹介していますが、コメント内のようにforループ内で最大、最小を求めても構いません。
if (brd.sns_MC3630.available()) {
...
brd.sns_MC3630.get_que().clear(); // clean up the queue
step.next(STATE::REQUEST_TX); // next state
} else if (step.is_timeout()) {
Serial << crlf << "!!!FATAL: SENSOR CAPTURE TIMEOUT.";
step.next(STATE::EXIT_FATAL);
}
break;
.sns_MC3630.get_que().clear()
を呼び出し、キューにあるデータをクリアします。これを呼び出さないと続くサンプル取得ができません。その後STATE::REQUEST_TX
状態に遷移します。
.is_timeout()
はタイムアウトをチェックします。タイムアウト時は異常としてSTATE::EXIT_FATAL
に遷移します。
STATE::REQUEST_TX
case STATE::REQUEST_TX:
if (TxReq()) {
step.set_timeout(100);
step.clear_flag();
step.next(STATE::WAIT_TX);
} else {
Serial << crlf << "!!!FATAL: TX REQUEST FAILS.";
step.next(STATE::EXIT_FATAL);
}
break;
状態REQUEST_TX
ではローカル定義関数TxReq()
を呼び出し、得られたセンサーデータの処理と送信パケットの生成・送信を行います。送信要求は送信キューの状態などで失敗することがあります。送信要求が成功した場合、TxReq()はtrueとして戻りますが、まだ送信は行われません。送信完了はon_tx_comp()
コールバックが呼び出されます。
また.clear_flag()
により送信完了を知らせるためのフラグをクリアしておきます。同時にタイムアウトも設定します。
E_STATE::WAIT_TX
case STATE::WAIT_TX:
if (step.is_flag_ready()) {
step.next(STATE::EXIT_NORMAL);
}
if (step.is_timeout()) {
Serial << crlf << "!!!FATAL: TX TIMEOUT.";
step.next(STATE::EXIT_FATAL);
}
break;
状態STATE::WAIT_TX
では、無線パケットの送信完了を待ちます。フラグはon_tx_comp()
コールバック関数でセットされ、セット後に.is_flag_ready()
が_true_になります。
E_STATE::EXIT_NORMAL
, E_STATE::EXIT_FATAL
case STATE::EXIT_NORMAL:
sleepNow();
break;
case STATE::EXIT_FATAL:
Serial << flush;
the_twelite.reset_system();
break;
一連の動作が完了したときは状態STATE::EXIT_NORMAL
に遷移しローカル定義の関数sleepNow()
を呼び出しスリープを実行します。またエラーを検出した場合は状態STATE::EXIT_FATAL
に遷移し、システムリセットを行います。
MWX_APIRET TxReq()
MWX_APIRET TxReq() {
auto&& brd = the_twelite.board.use<PAL_MOT>();
MWX_APIRET ret = false;
// prepare tx packet
if (auto&& pkt = the_twelite.network.use<NWK_SIMPLE>().prepare_tx_packet()) {
// set tx packet behavior
pkt << tx_addr(0x00) // 0..0xFF (LID 0:parent, FE:child w/ no id, FF:LID broad cast), 0x8XXXXXXX (long address)
<< tx_retry(0x1) // set retry (0x1 send two times in total)
<< tx_packet_delay(0, 0, 2); // send packet w/ delay
// prepare packet (first)
pack_bytes(pkt.get_payload() // set payload data objects.
, make_pair(FOURCHARS, 4) // just to see packet identification, you can design in any.
, uint16_t(sensor.n_seq)
, uint8_t(sensor.n_samples)
, uint16_t(sensor.x_ave)
, uint16_t(sensor.y_ave)
, uint16_t(sensor.z_ave)
, uint16_t(sensor.x_min)
, uint16_t(sensor.y_min)
, uint16_t(sensor.z_min)
, uint16_t(sensor.x_max)
, uint16_t(sensor.y_max)
, uint16_t(sensor.z_max)
);
// perform transmit
ret = pkt.transmit();
if (ret) {
Serial << "..txreq(" << int(ret.get_value()) << ')';
}
}
return ret;
}
最期にパケットの生成と送信を要求を行います。パケットには続き番号、サンプル数、XYZの平均値、XYZの最小サンプル値、XYZの最大サンプル値を含めます。
sleepNow()
void sleepNow() {
Serial << crlf << "..sleeping now.." << crlf;
Serial.flush();
step.on_sleep(false); // reset state machine.
the_twelite.sleep(3000, false); // set longer sleep (PAL must wakeup less than 60sec.)
}
スリープの手続きです。
- シリアルポートはスリープ前に
Serial.flush()
を呼び出してすべて出力しておきます。 <SM_SIMPLE>
ステートマシンはon_sleep()
を行う必要があります。